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NONLINEAR STOCHASTIC TIME-FRACTIONAL DIFFUSION

EQUATIONS ON R: MOMENTS, HÖLDER REGULARITY

AND INTERMITTENCY

LE CHEN

Abstract. We study the nonlinear stochastic time-fractional diffusion equa-
tions in the spatial domain R, driven by multiplicative space-time white noise.
The fractional index β varies continuously from 0 to 2. The case β = 1 (resp.

β = 2) corresponds to the stochastic heat (resp. wave) equation. The cases
β ∈ ]0, 1[ and β ∈ ]1, 2[ are called slow diffusion equations and fast diffusion
equations, respectively. Existence and uniqueness of random field solutions
with measure-valued initial data, such as the Dirac delta measure, are estab-
lished. Upper bounds on all p-th moments (p ≥ 2) are obtained, which are
expressed using a kernel function K(t, x). The second moment is sharp. We
obtain the Hölder continuity of the solution for the slow diffusion equations
when the initial data is a bounded function. We prove the weak intermittency
for both slow and fast diffusion equations. In this study, we introduce a special
function, the two-parameter Mainardi functions, which are generalizations of
the one-parameter Mainardi functions.

1. Introduction

Viscoelasticity is the property of materials that exhibit both viscous and elastic
characteristics when undergoing deformation (see e.g. [15,21,29] ). Viscosity mainly
refers to fluids and elasticity to solids. A linear theory to bring these two properties
together has been achieved using fractional calculus by Mainardi and his coauthors;
see [23] for an introduction to this subject. It has wide applications to fields such
as chemistry (e.g. [16,17]), seismology (e.g. [1]), soil mechanics (e.g. [20]), arterial
rheology ([12]), biological tissues (e.g. [22]), etc. In this linear model, the system
is governed by the partial differential operator

L = xD
a
δ − tD

β
∗ ,

where the space derivative xD
a
δ is the Riesz-Feller fractional derivative of order

a and skewness δ, and the time derivative tD
β
∗ is a Caputo derivative of order

β ∈ ]0, 2]. These three parameters vary in the following ranges:

a ∈ ]0, 2] , β ∈ ]0, 2] , |δ| ≤ a ∧ (2− a) ,
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where a ∧ b := min(a, b). We are interested in this linear model driven by multi-
plicative space-time white noise:

Lu(t, x) = I
�β�−β
t

[
ρ(u(t, x))Ẇ (t, x)

]
, t ∈ R∗

+ := ]0,+∞[ , x ∈ R,

where �β� is the smallest integer not less than β, Ẇ is the space-time white noise,
the function ρ : R �→ R is Lipschitz continuous, and Iαt is the Riemann-Liouville
fractional integral of order α:

Iαt f(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, for t > 0 and α > 0,

and I0t = Id, where Id denotes the identity operator. When β is an integer, then

I
�β�−β
t = Id. The case where ρ(u) = λu, β = 1, and a = 2 (hence δ = 0), is called
the parabolic Anderson model; see [2, 3]. The logarithm of the solution gives the
Hopf-Cole solution to the famous Kardar-Parisi-Zhang equation [19].

Due to the time-fractional derivative, the semigroup theory does not work ex-
cept for the case β = 1. These studies heavily depend on the properties of the
fundamental solutions or the Green functions to Lu = 0. In [24], some of these
Green functions are obtained through inverse Fourier transform of some special
functions, among which the following three cases are more tractable: (1) space-
fractional heat equation: {0 < a ≤ 2, β = 1}; (2) time-fractional heat/wave equa-
tion: {a = 2, 0 < β ≤ 2}; (3) neutral fractional diffusion equation: {0 < a = β ≤ 2}.
The first case has been recently studied in [8, 9]. In this paper, we will study the
second case, i.e., we will study the following nonlinear stochastic time-fractional
diffusion equations (formally):

(
tD

β
∗ − ∂2

∂x2

)
u(t, x) = I

�β�−β
t

[
ρ (u(t, x)) Ẇ (t, x)

]
, β ∈ ]0, 2], t ∈ R∗

+, x ∈ R.

(1.1)

The Caputo fractional differential operator tD
β
∗ is defined as

tD
β
∗ f(t) :=

⎧⎪⎪⎨⎪⎪⎩
1

Γ(m− β)

∫ t

0

dτ
f (m)(τ )

(t− τ )β+1−m
if m− 1 < β < m ,

dm

dtm
f(t) if β = m .

We refer to [14,24] for more details of these fractional differential operators. When

β = 2, tD
β
∗ = ∂2

∂t2 and (1.1) reduces to the stochastic wave equation (SWE)(
∂2

∂t2
− κ2 ∂2

∂x2

)
u(t, x) = ρ(u(t, x))Ẇ (t, x) ,(1.2)

with the speed of wave propagation κ = 1. When β = 1, tD
β
∗ = ∂

∂t and (1.1)
reduces to the stochastic heat equation (SHE)(

∂

∂t
− ν

2

∂2

∂x2

)
u(t, x) = ρ(u(t, x))Ẇ (t, x) ,(1.3)

with the diffusion parameter ν = 2. The above two special cases have been studied
carefully; see [4–7,10]. The case β ∈ ]0, 1] is called the slow diffusion, β ∈ ]1, 2] the
fast diffusion, and β = 1 the standard diffusion. In the following we will also call
the case β ∈ ]0, 1[ slow diffusion and the case β ∈ ]1, 2[ fast diffusion. For the slow
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NONLINEAR STOCHASTIC TIME-FRACTIONAL DIFFUSION EQUATIONS 8499

and standard diffusions, we only need to specify the initial data u(0, x). For the
fast diffusion, we need to give ∂

∂tu(0, x) as well. Note that another related equation
is the stochastic fractional heat equation (SFHE)(

∂

∂t
− xD

a
δ

)
u(t, x) = ρ(u(t, x))Ẇ (t, x) ,(1.4)

which has been studied recently in [8, 9]; see also [13, 18].
All investigations on SPDEs of the above kinds require a good study of the

corresponding Green functions. By Green functions, we mean the solutions to the
equations ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
tD

β
∗ − ∂2

∂x2

)
u(t, x) = 0, t ∈ R∗

+, x ∈ R ,

u(0, x) = δ0(x) , x ∈ R , if 0 < β ≤ 1 ,

u(0, x) = 0 ,
∂

∂t
u(0, x) = δ0(x) , x ∈ R , if 1 < β ≤ 2 ,

(1.5)

where δ0 is the Dirac delta function with a unit mass at zero. We use Gβ(t, x)
to denote these Green functions. The Green functions for slow diffusion equations
and their properties can be found in [24]. As far as we know, there is no literature
studying the Green functions of the fast diffusion equations. Note that in [24], the
Green functions for the fast diffusions are not the ones we need. To obtain the
Green functions for the fast diffusion equations, one needs to generalize the one-
parameter Mainardi function (see [23,24]) to the two-parameter settings (see (4.4)
below), based on which corresponding properties for the Green functions of the fast
diffusion equations need to be proved (see Lemma 4.1 below).

If we denote the solution to the homogeneous equation by J0(t, x) (see (2.3)
below), then the rigorous meaning of (1.1), which is the actual equation that we
are going to study, is the following stochastic integral equation:

(1.6)

u(t, x) = J0(t, x) + I(t, x), where

I(t, x) =

∫∫
[0,t]×R

Gβ (t− s, x− y) ρ (u(s, y))W (ds, dy),

where the stochastic integral is the Walsh integral [34]. To motivate the relation
between the SPDE (1.1) and the integral equation (1.6), we need the time-fractional
Duhamel’s principle (see [33, Theorem 3.6]). If we replace the right-hand side of
(1.1) by a nice forcing term g(t, x). Then by [33, Theorem 3.6], the solution to (1.1)

with vanishing initial conditions ∂m

∂tmu(0, x) = 0 for m = 0, . . . , �β� − 1 is

u(t, x) =

∫ t

0

ds

∫
R

dy Gβ(t− s, x− y) tD
�β�−β
+ g(s, y),

where tD
α
+ for α ≥ 0 is the Riemann-Liouville fractional derivatives of order α:

tD
α
+f(t) :=

⎧⎪⎪⎨⎪⎪⎩
1

Γ(m− α)

dm

dtm

∫ t

0

dτ
f(τ )

(t− τ )α+1−m
if m− 1 < α < m ,

dm

dtm
f(t) if α = m .
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Then if one replaces g(t, x) by I
�β�−β
t g(t, x) and uses the fact that tD

α
+ ◦ Iαt = Id

for all α ≥ 0, then one can see that the solution to⎧⎪⎪⎨⎪⎪⎩
(

tD
β
∗ − ∂2

∂x2

)
u(t, x) = I

�β�−β
t [g(t, x)] , β ∈ ]0, 2], t ∈ R∗

+, x ∈ R,

∂m

∂tm
u(0, x) = 0, for m = 0, . . . , �β� − 1,

is

u(t, x) =

∫ t

0

ds

∫
R

dy Gβ(t− s, x− y) g(s, y).

We will establish the existence of random field solutions to (1.6) starting from
measure-valued initial conditions. Let μ be a Borel measure and μ = μ+ − μ−,
where, from the Jordan decomposition, μ± are two nonnegative Borel measures
with disjoint support and |μ| = μ+ + μ−. Define an axillary function

fη(x) := exp
(
−η

2
|x|1+�β�

)
, for x ∈ R,(1.7)

where �β
 is the largest integer not bigger than β. Let M(R) be the set of signed
(regular) Borel measures on R. For 0 < β < 2, define

Mβ
T (R) :=

{
μ ∈ M(R) : (|μ| ∗ fη) (x) < +∞ , for all η > 0 and x ∈ R

}
,(1.8)

where ∗ denotes the convolution in the space variable. Then M1
T (R) = MH(R),

where MH(R) is the notation used in [5, 6] for the admissible initial data for the
SHE (1.3). Note that even though the initial data can be Schwartz distributions for
the heat equation without noise, but for the SPDE, initial data cannot go beyond
measures; see [4, Theorem 3.2.17] or [7, Theorem 2.22]. We will prove the existence

and uniqueness of random field solutions to (1.1) for all initial data in Mβ
T (R). As

in [6–8], we will obtain similar moment formulas expressed using a special function
K(t, x). For the SHE and the SWE, this kernel function K(t, x) has an explicit
form. But for the space-fractional heat equations [8] and the current time-fractional
diffusion equations, we only have some estimates on it. In particular, for the slow
diffusion equations, we will obtain both upper and lower bounds on K(t, x). For
the fast diffusion equations, we will only derive some upper bounds.

After establishing the existence of random field solutions, we will study some
properties of the solutions. The first property is the sample-path regularity (for
the slow diffusion equations). Given a subset D ⊆ R+ × R and positive constants
β1, β2, denote by Cβ1,β2

(D) the set of functions v : R+ ×R → R with the following
property: for each compact set K ⊆ D, there is a finite constant C such that for
all (t, x) and (s, y) ∈ K,

|v(t, x)− v(s, y)| ≤ C
(
|t− s|β1 + |x− y|β2

)
.

Denote

Cβ1−,β2−(D) :=
⋂

α1∈ ]0,β1[

⋂
α2∈ ]0,β2[

Cα1,α2
(D) .

We will show that for the slow diffusion equations, if the initial data is a bounded
function, i.e., μ(dx) = f(x)dx with f ∈ L∞(R), then

u(·, ◦) ∈ C 2−β
4 −, 1

2−
(R+ × R) , a.s.(1.9)
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Moreover, if f is bounded and α-Hölder continuous (α ∈ ]0, 1[ ), then

u(·, ◦) ∈ C 2−β
4 −, 12−

(
R∗

+ × R
)
∩ C(αβ

2 ∧ 2−β
4 )−, (αβ∧ 1

2 )−
(R+ × R) , a.s.(1.10)

When β = 1, the above results partially recover the results for the stochastic heat
equation in [5]. Note that the regularity results in [5] is more general since the
initial data can be measured.

The second property that we are going to study is the intermittency. More
precisely, define the upper and lower (moment) Lyapunov exponents as

mp(x) := lim sup
t→+∞

logE [|u(t, x)|p]
t

and mp(x) := lim inf
t→+∞

logE [|u(t, x)|p]
t

.

(1.11)

When the initial data are spatially homogeneous (i.e., the initial data are constants),
the Lyapunov exponents do not depend on the spatial variable. In this case, a
solution is called fully intermittent if m1 = 0 and m2 > 0 (see [3, Definition III.1.1,
on p. 55]). As for the weak intermittency, there are various definitions. For
convenience of stating our results, we will call the solution weakly intermittent of
type I if m2 > 0, and weakly intermittent of type II if m2 > 0. Clearly, the weak
intermittency of type I is slightly stronger than the weak intermittency of type II,
but weaker than the full intermittency by missing m1 = 0. The weak intermittency
of type II is used in [18].

The full intermittency for the SHE and the SFHE, and the weak intermittency
of type I for SWE are established in [2], [9] and [7], respectively. Conus, et al.
prove the weak intermittency of type II for the SWE in [11, Theorem 2.3]. We will
establish the weak intermittency of type I for the slow diffusion equations and the
weak intermittency of type II for the fast diffusion equations. Moreover, we show
that

mp ≤
{
C p

4−β
2−β if β ∈ ]0, 1],

C p
8−β
6−β if β ∈ ]1, 2[ ,

(1.12)

which reduces to the SHE case (see [2, 6, 18]) when β = 1, i.e., mp ≤ C p3, and

to the SWE case (see [7]) when β = 2, i.e., mp ≤ C p3/2. Note that the above
constants C may vary from one inequality to the other.

At the final stage of this work, we notice some recent works by Mijena and
Nane [25, 26], who have also studied this equation in a more general setting where
the Laplacian is replaced by −(−Δ)α/2 and the space dimension can be any d <
α(2∧β−1). When β ∈]0, 1[, α = 2 and d = 1, they obtain the same rate as in (1.12).
The main differences of our work from [25,26] include: (1) our initial data are more
general (measures), which entails more calculations; (2) we cover the case β ∈ ]1, 2[ ,
to which most efforts in Section 4 are contributed; (3) we derive both upper and
lower moment bounds, which can be handy for proving many other results; (4) we
prove the weak intermittency of type I for the slow diffusion equations, thanks to
our lower bound on the second moment.

These studies are far from being conclusive. Many aspects can be improved,
such as the Hölder regularity for measure-valued initial data and for fast diffusion
equations, full intermittency for both slow and fast diffusion equations, the SPDE
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(1.1) without the fractional integral operator, etc. Finally, one interesting ques-
tion is whether the sample-path comparison principle holds for the slow diffusion
equations; see the recent work [9] for the SFHE (1.4) and references therein.

This paper is structured as follows. We first introduce some notation in Section 2.
The main results are stated in Section 3. In Section 4, we prove some useful proper-
ties of the Green functions. Section 5 gives a general framework on calculating the
function K(t, x), based on which Theorem 3.4 is proved. The proof of the existence
and uniqueness results with moment estimates, i.e., Theorem 3.1, is presented in
Section 6.

2. Some preliminaries and notation

Recall that the Green functions Gβ(t, x) solve (1.5). Note that in [24], the
fundamental solution is defined with the initial conditions u(0, x) = δ0(x) and
∂
∂tu(0, x) = 0 for all β ∈ ]0, 2]. Let G∗

β(t, x), which is also called the Green function,

be the solution to (1.5) subject to the initial data

u(0, x) = δ0(x) and
∂

∂t
u(0, x) = 0.

Here are some special cases. If β = 1, then Gβ(t, x) reduces to the heat kernel
function, i.e.,

G1(t, x) =
1√
4t

exp

(
−x2

4t

)
, for (t, x) ∈ R+ × R.(2.1)

If β = 2, then Gβ(t, x) and G∗
β(t, x) reduce to the heat kernel functions, i.e.,

G2(t, x) =
1

2
1{|x|≤t} and G∗

2(t, x) =
1

2
(δt(x) + δ−t(x)) .(2.2)

For μ and ν ∈ Mβ
T (R), the solution to the following homogeneous equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
tD

β
∗ − ∂2

∂x2

)
u(t, x) = 0, t ∈ R∗

+, x ∈ R,

u(0, ·) = μ(·) , if 0 < β ≤ 1 ,

u(0, ·) = μ(·) , ∂

∂t
u(0, ·) = ν(·) , if 1 < β < 2 ,

will always be denoted by J0(t, x), which is equal to

J0(t, x) :=

⎧⎪⎪⎨⎪⎪⎩
∫
R

μ(dy)Gβ(t, x− y) , if 0 < β ≤ 1 ,∫
R

ν(dy)Gβ(t, x− y) +

∫
R

μ(dy)G∗
β(t, x− y) , if 1 < β < 2 .

(2.3)

Remark 2.1. For the slow diffusion equations (0 < β ≤ 1), the Green function
Gβ(t, x) is the same as the function Gθ

α,β(x, t) in [24, Section 3] with α = 2 and θ =

0. For the fast diffusion equations (1 < β < 2), our function G∗
β(t, x) corresponds

to the function Gθ
α,β(x, t) in [24, Section 3]. In these two cases, the Green functions

Gβ(t, x) and G∗
β(t, x), and their properties are mostly known; see [24] and [23,

Appendix F]. However, for the fast diffusion equations, the Green function Gβ(t, x)
and its properties need to be proved, which is done in Lemma 4.1 below.
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Let W = {Wt(A) : A ∈ Bb (R) , t ≥ 0} be a space-time white noise defined on a
complete probability space (Ω,F , P ), where Bb (R) is the collection of Borel sets
with finite Lebesgue measure. Let

Ft = σ (Ws(A) : 0 ≤ s ≤ t, A ∈ Bb (R)) ∨N , t ≥ 0,

be the natural filtration augmented by the σ-field N generated by all P -null sets in
F . We use ||·||p to denote the Lp(Ω)-norm (p ≥ 1). In this setup, W becomes a wor-

thy martingale measure in the sense of Walsh [34], and
∫∫

[0,t]×R
X(s, y)W (ds, dy) is

well-defined in this reference for a suitable class of random fields {X(s, y), (s, y) ∈
R+ × R}.

Recall that the rigorous meaning of the SPDE (1.1) is in the integral form (1.6).

Definition 2.2. A process u =
(
u(t, x), (t, x) ∈ R∗

+ × R
)
is called a random field

solution to (1.1) if

(1) u is adapted, i.e., for all (t, x) ∈ R∗
+ × R, u(t, x) is Ft-measurable;

(2) u is jointly measurable with respect to B
(
R∗

+ × R
)
×F ;

(3)
(
G2

β � ||ρ(u)||22
)
(t, x) < +∞ for all (t, x) ∈ R∗

+ × R, where � is the convo-

lution in both space and time variables. Moreover, the function (t, x) �→
I(t, x) mapping R∗

+ × R into L2(Ω) is continuous;
(4) u satisfies (1.6) a.s., for all (t, x) ∈ R∗

+ × R.

Assume that the function ρ : R �→ R is globally Lipschitz continuous with Lip-
schitz constant Lipρ > 0. We need some growth conditions on ρ: assume that for
some constants Lρ > 0 and ς ≥ 0,

|ρ(x)|2 ≤ L2
ρ

(
ς2 +x2

)
, for all x ∈ R.(2.4)

Sometimes we need a lower bound on ρ(x): assume that for some constants lρ > 0
and ς ≥ 0,

|ρ(x)|2 ≥ l2ρ
(
ς2 +x2

)
, for all x ∈ R .(2.5)

For all (t, x) ∈ R∗
+ × R, n ∈ N and λ ∈ R, define

L0 (t, x;λ) := λ2G2
β(t, x),

Ln (t, x;λ) := (L0 � · · · � L0) (t, x), for n ≥ 1 (n convolutions),(2.6)

K (t, x;λ) :=
∞∑

n=0

Ln (t, x;λ) .(2.7)

We will use the following conventions to the kernel functions K(t, x;λ):

K(t, x) := K(t, x;λ), K(t, x) := K (t, x;Lρ) ,

K(t, x) := K (t, x; lρ) , K̂p(t, x) := K (t, x; 4
√
pLρ) , for p ≥ 2 .

3. Main results

Our first theorem is about the existence, uniqueness and moment estimates of
the solutions to (1.1). It possesses a general form as [6, Theorem 2.4], [7, Theorem
2.3], and [8, Theorem 3.1].
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Theorem 3.1 (Existence, uniqueness and moments). Suppose that
(i) 0 < β < 2;
(ii) the function ρ is Lipschitz continuous and satisfies the growth condition (2.4);

(iii) the initial data are such that μ ∈ Mβ
T (R) if β ∈ ]0, 1], and μ, ν ∈ Mβ

T (R)
if β ∈ ]1, 2[ .

Then the SPDE (1.1) has a unique (in the sense of versions) random field solu-
tion {u(t, x) : (t, x) ∈ R∗

+ × R}. Moreover, the following statements are true:
(1) (t, x) �→ u(t, x) is Lp(Ω)-continuous for all integers p ≥ 2.
(2) For all even integers p ≥ 2, all t > 0 and x, y ∈ R,

||u(t, x)||2p ≤
{
J2
0 (t, x) +

([
ς2 +J2

0

]
�K

)
(t, x), if p = 2 ,

2J2
0 (t, x) +

([
ς2 +2J2

0

]
� K̂p

)
(t, x), if p > 2 .

(3.1)

(3) If ρ satisfies (2.5), then for all t > 0 and x, y ∈ R,

||u(t, x)||22 ≥ J2
0 (t, x) +

((
ς2 +J2

0

)
�K

)
(t, x) .(3.2)

The following Theorem 3.2 gives the Hölder continuity of the solution for the slow
diffusion equations. We cannot prove the Hölder regularity for the fast diffusion
equations due to the less precise results in Proposition 6.4 than those in Proposition
6.3.

Theorem 3.2. Suppose that β ∈ ]0, 1]. If μ(dx) = f(x)dx with f ∈ L∞ (R), then

sup
(t,x)∈[0,T ]×R

||u(t, x)||2p < +∞, for all T ≥ 0 and p ≥ 2.(3.3)

Moreover, we have

I(·, ◦) ∈ C 2−β
4 −, 12−

(R+ × R) , a.s.,(3.4)

and (1.9) holds. If f is bounded and α-Hölder continuous (α ∈ ]0, 1[ ), then (1.10)
holds.

Proof. The bound (3.3) is a simple consequence of (3.1). The proof of (3.4) is
straightforward under (3.3) (see [5, Remark 4.6]). The remaining parts are due to
Proposition 6.6. �

In only very few cases, one can derive explicit form for K(t, x). A first case is
when β = 1; see Example 5.3. A second case is given in Example 5.4. A third case
is when β = 2:

Kwave(t, x;λ) =
λ2

4
I0

(√
λ2((κt)2 − x2)

2κ

)
1{|x|≤κt},

where I0(x) is the modified Bessel function of the first kind of order 0; see [7].
Hence, in order to use the moment bounds in (3.1) and (3.2), we need some good
estimates on the kernel function K(t, x). For this purpose, we define some reference
kernel functions:

Gβ(t, x) :=

⎧⎪⎪⎨⎪⎪⎩
1

2 tβ/2
exp

(
− |x|
tβ/2

)
if 0 < β < 1 ,

1√
4πtβ

exp

(
− x2

4tβ

)
if 1 ≤ β < 2 .

(3.5)
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Note that when 1 ≤ β < 2, Gβ(t, x) = G1

(
tβ , x

)
. For convenience, when 0 < β < 1,

denote

Ge,β(t, x) := Gβ(t, x),(3.6)

where the subscription “e” refers to the exponential function. Clearly, Gβ(t, x) is
nonnegative and

∫
R
dx Gβ(t, x) = 1. For 0 < β < 1, define

¯
Gβ(t, x) := G1

(
tβ , x

)
=

1√
4πtβ

exp

(
− x2

4 tβ

)
.(3.7)

We need some constants:

Ĉβ :=
2β/2

2β/2 − 1
exp

(
− 1

2β/2

)
, for β > 0,(3.8)

and

C̃β :=

⎧⎨⎩Ĉβ if 0 < β < 1 ,

2
β−1
2 if 1 ≤ β < 2 .

(3.9)

Remark 3.3. The constant Ĉβ as a function of β ∈ ]0, 2] is decreasing with Ĉ2 =

2e−1/2 ≈ 1.21306, Ĉ1 =
(
2 +

√
2
)
e
− 1√

2 ≈ 1.68344, and limβ→0+ Ĉβ = ∞.

Define

Ψβ := sup
x∈R

G2
β(1, x)

Gβ(1, x)
< +∞ , for 0 < β < 2,(3.10)

and

¯
Ψβ := inf

x∈R

G2
β(1, x)

¯
Gβ(1, x)

> 0, for 0 < β < 1.(3.11)

Proposition 5.8 below shows that Ψβ < +∞ and
¯
Ψβ > 0.

Theorem 3.4. Fix λ > 0.
(1) For β ∈ ]0, 2[ , there is a finite constant C := C(β, λ) such that

K(t, x;λ) ≤ C

tσ
Gβ(t, x) (1 + tσ exp (Υt)) ,(3.12)

where

σ = β/2 + 2(1− �β�) and Υ =
(
λ2 Ψβ C̃β Γ(1− σ)

) 1
1−σ

.(3.13)

(2) For β ∈ ]0, 1[ , there is a constant
¯
C :=

¯
C(β, λ) > 0 such that

K(t, x;λ) ≥
¯
C

¯
Gβ(t, x) exp (

¯
Υ t) ,(3.14)

where

¯
σ = β/2− 1 and

¯
Υ =

(
2−1/2 λ2

¯
Ψβ Γ(1−

¯
σ)

) 1
1−

¯
σ

.

Proof. Apply Proposition 5.8 below with λGβ(t, x). Note that introducing the
factor λ changes the constants C0 and

¯
C0 by a factor λ2. �

The last set of results are the weak intermittency and the bounds in (1.12).
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Theorem 3.5 (Weak intermittency of type I for slow diffusion equations). Suppose
that β ∈ ]0, 1[ and μ(dx) = c dx. If ρ satisfies (2.4) and |c|+ | ς | �= 0, then

mp ≤ 1

2

[
24 L2

ρ ĈβΨβ Γ(1− β/2)
] 2

2−β

p
4−β
2−β , for all p ≥ 2 even.

If ρ satisfies (2.5) and |c|+ | ς | �= 0, then the solution is weakly intermittent of type
I:

mp ≥ p

2

(
2−1/2 l2ρ ¯

Ψβ Γ(2− β/2)
) 2

4−β

, for all p ≥ 2.

Proof. Clearly, in this case, J0(t, x) = c. Hence, by (3.1) and (3.12),

||u(t, x)||2p ≤ c2 +
C

tσ
(
ς2 +2c2

)(
1 + tσ exp

([
24 L2

ρ ĈβΨβ Γ(1− σ)
] 1

1−σ

p
1

1−σ t

))
,

with σ = β/2. Then increase the power by a factor p/2. This proves the upper
bounds. As for the lower bound, by (3.2) and (3.14),

||u(t, x)||2p ≥ ||u(t, x)||22 ≥ c2 +
¯
C

(
ς2 +c2

)
exp

([
2−1/2 l2ρ ¯

Ψβ Γ(1−
¯
σ)

] 1
1−

¯
σ

t

)
with

¯
σ = β

2 − 1. This completes the proof. �

Theorem 3.6 (Weak intermittency of type II for fast diffusion equations). Suppose
that β ∈]1, 2[, μ(dx) = cdx and ν(dx) = c′dx. If ρ satisfies (2.4) and |c|+|c′|+| ς | �=
0, then

mp ≤ 1

2

[
29/2 L2

ρ Ψβ Γ(3− β/2)
] 2

6−β

p
8−β
6−β , for all p ≥ 2 even.

Proof. By Lemma 4.1(iii), J0(t, x) = c t + c′. The condition |c| + |c′| �= 0 implies
J0(t, x) �= 0 for large t. Hence, by (3.1) and (3.12),

||u(t, x)||2p ≤ (c t+ c′)2 +
C

tσ
(
ς2 +2(c t+ c′)2

)
×

(
1 + tσ exp

([
24C̃β L

2
ρ Ψβ Γ(1− σ)

] 1
1−σ

p
1

1−σ t

))
with σ = β

2 − 2. Then increase the power by a factor p/2 and use the fact that

C̃β ≤
√
2. �

4. Some properties of the Green functions

We need some special functions. The following two-parameter Mittag-Leffler
function

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0 ,(4.1)

is a generalization of exponential function, E1,1(z) = ez; see, e.g., [30, Section 1.2].
Another special case1 is

E1/2,1/2(x) =
1√
π
+ x ex

2

erfc(−x), for x ≥ 0,(4.2)

1Proof of (4.2). By [27, 41:6:6], 1√
πx2

+ ex
2
erfc(−x) = 1

x2

∑∞
n=1

xn

Γ(n/2)
. Then apply (5.10).�
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where erf(x) = 2√
x

∫ x

0
dy e−y2

is the error function and erfc(x) = 1 − erf(x) is the

complementary error function. We will use the convention that Eα(z) = Eα,1(z).

A function is called completely monotonic if (−1)nf (n)(x) ≥ 0 for n = 0, 1, 2, . . . ;
see [35, Definition 4, p. 108]. An important fact [32] that we are going to use is
that

x ∈ R+ �→ Eα,β(−x) is completely monotonic ⇐⇒ 0 < α ≤ 1 ∧ β.(4.3)

Let Wλ,μ(z) be the two-parameter Wright function of order λ defined as follows:

Wλ,μ(z) :=
∞∑

n=0

zn

n! Γ (λn+ μ)
, for λ > −1, μ ∈ C and z ∈ C ;

see, e.g., [23, Appendix F] and references therein. We define the two-parameter
Mainardi functions of order λ ∈ [0, 1[ by

Mλ,μ(z) := W−λ,μ−λ(−z) =
∞∑

n=0

(−z)n

n! Γ (μ− (n+ 1)λ)
, for μ ∈ C and z ∈ C ,

(4.4)

and we will use the convention that Mλ(z) = Mλ,1(z). In particular, M1/2(z) =
1√
π
exp

(
−z2/4

)
. The one-parameter Mainardi functionsMλ(z) are used by Mainardi

et al. in [23,24]. This two-parameter extension is necessary for the Green function
Gβ(t, x) of the fast diffusions.

Lemma 4.1 (Properties of the Green functions Gβ(t, x) and G∗
β(t, x)). For β ∈

]0, 2[ , the following properties hold:
(i) The Green function Gβ(t, x) has the following explicit form:

Gβ(t, x) =
t�β�−1−β/2

2
Mβ/2,�β�

(
|x|
tβ/2

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t−β/2

2
Mβ/2

(
|x|
tβ/2

)
, if 0 < β ≤ 1,

t1−β/2

2
Mβ/2,2

(
|x|
tβ/2

)
, if 1 < β < 2.

(4.5)

The function G∗
β(t, x) has the same form as (4.5) except that all �β�’s in (4.5)

should be replaced by 1, i.e.,

G∗
β(t, x) =

t−β/2

2
Mβ/2

(
|x|
tβ/2

)
, for 1 < β < 2.

(ii) Gβ(t, x) has the following scaling property:

Gβ(t, x) = t�β�−1−β/2Gβ

(
1,

x

tβ/2

)
.(4.6)

The scaling property of G∗
β(t, x) is the same as (4.6) except that the �β� in (4.6)

should be replaced by 1.
(iii) For any t > 0 fixed, both functions x �→ Gβ(t, x) and x �→ G∗

β(t, x) are sym-

metric and nonnegative, i.e., Gβ(t, x) = Gβ(t,−x) ≥ 0 and G∗
β(t, x) = G∗

β(t,−x) ≥
0, for all x ∈ R. Moreover,∫

R

dx Gβ(t, x) = t�β�−1 and

∫
R

dx G∗
β(t, x) = 1 .(4.7)
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In particular, the functions x �→ Gβ(t, x) with β ∈ ]0, 1] and x �→ G∗
β(t, x) are

probability densities.
(iv) Gβ(1, x) has the following asymptotic property:

Gβ(1, x) =
1

2
Mβ/2,�β� (|x|) ≈ A |x|a e−b|x|c , as |x| → +∞ ,(4.8)

where

A = π−1/22
2�β�−3
2−β (2− β)

β−2�β�
2 β

β(1+β−2�β�)
2(2−β) ≥ 1√

8π
,(4.9)

a =
1 + β − 2 �β�

2− β
≤ 0 ,(4.10)

c =
2

2− β
> 1 ,(4.11)

b = (2− β) 2−2/(2−β)ββ/(2−β) ∈ ]0, 1[ .(4.12)

G∗
β(1, x) has the same asymptotic property except that all �β�’s in (4.8), (4.9) and

(4.10) should be replaced by 1, the range of a is ]− 1/2,+∞[ and the range of A

is [1/
√
8eπ, 1/2[ . See Figure 1 for the plots of these parameters as functions of β.

(v) Gβ(t, x) satisfies the following moment formula:∫
R

dx |x|aGβ(t, x) =
Γ (a+ 1)

Γ
(

a β
2 + �β�

) taβ/2+�β�−1 , for a > −1 and t ≥ 0 .(4.13)

The moment formula for G∗
β(t, x) is the same as (4.13) except that all �β�’s should

be replace d by 1.
(vi) The Fourier transform of the Green function Gβ(t, x) is∫

R

dx e−iξxGβ(t, x) = t�β�−1 Eβ,�β�
(
−tβξ2

)
, for t > 0 and ξ ∈ R .(4.14)

The Fourier transform of G∗
β(t, x) is the same as (4.14) except that all �β�’s in

(4.14) should be replaced by 1.
(vii) the Laplace transform of the function R+ � x �→ Gβ(1, x) is∫ ∞

0

dx e−zxGβ(1, x) =
1

2
Eβ/2,�β�(−z) , for all z ∈ C .(4.15)

The Laplace transform of R+ � x �→ G∗
β(1, x) is the same as (4.15) except that the

�β� in (4.15) should be replaced by 1.
(viii) The function x �→ Gβ(t, x) attains its maximum value at x = 0:

sup
x∈R

Gβ(t, x) = Gβ(t, 0) =
t�β�−1−β/2

2
Γ

(
�β� − β

2

)−1

.(4.16)

The function x �→ G∗
β(t, x) attains two symmetric maximums that move apart from

the origin with time.
(ix) The function x �→ Gβ(t, x) is continuous at x = 0 but in general not differ-

entiable there. Its n-th derivatives are equal to

∂n

∂xn
Gβ(t, x) =

⎧⎪⎪⎨⎪⎪⎩
(−1)nt�β�−1−(n+1)β/2

2
Mβ/2,�β�−nβ/2

( x

tβ/2

)
if x > 0 ,

t�β�−1−(n+1)β/2

2
Mβ/2,�β�−nβ/2

(
− x

tβ/2

)
if x < 0 .

(4.17)
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β

a

c

b

21−1/2

− 2

1

1/4

2

√
π/2

2
√
π

√
8π

A−1

A−1

a

(a) Gβ(1, x)

β

a

c

b

21−1/2

1

2

1/4

√
8π

2
√
π

√
8eπ

A−1

a

(b) G∗
β(1, x)

Figure 1. The parameters of the asymptotics of the functions
Gβ(1, x) and G∗

β(1, x).

Proof. Denote

G�
β(t, x) :=

{
Gβ(t, x) if β ∈ ]0, 1],

G∗
β(t, x) if β ∈ ]1, 2[ .

All these properties for G�
β(t, x) can be found in [24] and [23, Appendix F]. The

expression (4.5) for G�
β(t, x) can be found in [24, (4.23)]. The scaling property (4.6)

for G�
β(t, x) can be found in [24, (3.7)]. The asymptotic property of G�

β(t, x) can be

found in [24, (4.29), (4.30)]. The moment formula (4.13) for G�
β(t, x) can be found

in [24, (4.31)], where one can extend integer n to all a > −1. The Fourier transform
of G�

β(t, x) can be found in [24, (4.21)]. The Laplace transform (4.15) of G�
β(t, x)

is due to the Laplace transform of the Wright function of the second kind (see e.g.,

[23, (F. 25), on p. 248]): W−λ,μ(−x)
L−→ Eλ,λ+μ(−z) for 0 < λ < 1, which implies

Mλ,μ(x)
L−→ Eλ,μ(−z) , for 0 < λ < 1 .(4.18)

The statements in both (iii) and (viii) for G�
β(t, x) can be found in [24, p. 22].

It remains to prove properties of the Green functions Gβ(t, x) with β ∈ ]1, 2[ .
Since the arguments for Gβ(t, x) with β ∈ ]0, 1] are similar to those for Gβ(t, x)
with β ∈ ]1, 2[ , in the following, we will prove both cases altogether. We will mostly

follow the arguments by Mainardi et al. in [24]. Let f̂ and g̃ denote the Fourier
transform in the space variable and the Laplace transform in the time variable,
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respectively. Apply the Fourier transform on the initial data of (1.5):⎧⎪⎨⎪⎩
Ĝβ(0+, ξ) = 1 , if 0 < β ≤ 1 ,

Ĝβ(0+, ξ) = 0 ,
∂

∂t
Ĝβ(0+, ξ) = 1 , if 1 < β < 2 .

Apply both the Fourier and the Laplace transforms on both sides of the main
equation in (1.5): ˜̂

Gβ(s, ξ)s
β − sβ−�β� + ξ2

˜̂
Gβ(s, ξ) = 0 ,

where we have used the equivalent definition of the Caputo fractional differential
operator of order β through the Laplace transform (see [24, (2.12)]):

L
[
tD

β
∗ f(t)

]
(s) = sβ f̃ −

m−1∑
k=0

sβ−1−k f (k)(0+) , if m− 1 < β ≤ m .

Hence, ˜̂
Gβ(s, ξ) =

sβ−�β�

sβ + ξ2
, for 0 < β < 2 .

By the scaling rules for the Fourier and Laplace transforms, we have that

Gβ(bt, ax)
F−→ 1

a
Ĝβ(bt, ·)(ξ/a) L−→ 1

ab

˜̂
Gβ(s/b, ξ/a) =

1

ab

(
s
b

)β−�β�(
s
b

)β
+

(
ξ
a

)2

=
1

ab1−�β�
sβ−�β�

sβ +
(

bβ/2ξ
a

)2

L−1

−→ 1

ab1−�β� Ĝβ(t, ·)
(
bβ/2

a
ξ

)
F−1

−→ b−β/2+�β�−1Gβ

(
t,

a

bβ/2
x
)

,

which proves the scaling property (4.6). Now use the following Laplace transform
(see [30, (1.80, p. 21)])∫ ∞

0

dt e−sttαk+β−1E
(k)
α,β (±λtα) =

k! sα−β

(sα ∓ λ)k+1
, �(s) > |λ|1/α ,

where E
(k)
α,β(y) =

dk

dykEα,β(y). We see that Ĝβ(t, ξ) = t�β�−1 Eβ,�β�
(
−ξ2tβ

)
, which

proves (4.14). Then an application of the inverse Fourier transform using Lemma
4.5 gives the Green function (4.5). As a consequence, the function x �→ Gβ(t, x) is
symmetric and ∫

R

dx Gβ(t, x) = Ĝβ(t, 0) = t�β�−1 ,

which proves (4.7). By the scaling property and the symmetry of x �→ Gβ(t, x),∫
R

dx |x|nGβ(t, x) = 2

∫ ∞

0

dx xnGβ(t, x) = 2 t
nβ
2 +�β�−1

∫ ∞

0

dy yn Gβ(1, y).

Then the moment formula (4.13) is proved by applying Lemma 4.4.
The asymptotic property of Gβ(1, x) is a direct consequence of the asymptotics

of the Wright function (see [23, (F.3), p. 238]): For 0 < λ < 1, and μ ∈ R,

Mλ,λ+μ(x) = W−λ,μ(−x) ≈ A0 Yλ(x)
1/2−μ exp (−Yλ(x)) , as x → +∞ ,(4.19)

where
Yλ(x) = (1− λ)λ

λ
1−λx

1
1−λ and A0 = (2π (1− λ))−1/2 .
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Note that the constant A0 can be found in [36, 37].
The Laplace transform in (4.15) is proved by (4.18). Bernstein’s theorem on

monotone functions (see Theorem 4.6) and (4.3) prove the positivity of Gβ(1, x) for
x ≥ 0. Then by symmetry of Gβ(1, x), Gβ(1, x) ≥ 0 for all x ∈ R. By (4.15) and
the property of the Laplace transform, we see that

L
[
d

dx
Gβ(1, ·)

]
(z) =

z

2
Eβ/2,�β�(−z)−Gβ(1, 0) = −Eβ/2,�β�−β/2(−z) ,

where we have also used the fact that Gβ(1, 0) = [2Γ (�β� − β/2)]−1 and the re-

currence relation of the Mittag-Leffler function Eα,β(z) = Γ (β)
−1

+ zEα,α+β(z).
Notice the function Eβ/2,�β�−β/2(−x) is completely monotone for x ∈ R+ because
�β� − β/2 ≥ β/2 and β/2 ∈ ]0, 1]. Hence, by the same reason for the positivity of
Gβ(1, x), we can conclude the nonpositivity of d

dxGβ(1, x), which proves that the
global maximum of Gβ(t, x) is achieved at x = 0.

As for (4.17), by differentiating term-by-term (see also [23, (F. 8), p. 239]), we
see that d

dzWλ,μ(z) = Wλ,λ+μ(z), from which one can easily derive that

dn

dzn
Mλ,μ(z) = (−1)nMλ,μ−nλ(z) .(4.20)

Hence, (4.17) follows. This completes the proof of Lemma 4.1. �

Remark 4.2. Note that in general, the function x �→ Gβ(t, x) is not differentiable
at x = 0. But we have

∂n

∂xn
Gβ(t, 0−) = (−1)n

∂n

∂xn
Gβ(t, 0+)

=
(−1)nt�β�−1−(n+1)β/2

2
Γ

(
�β� − β(n+ 1)

2

)−1

,

because Mβ/2,�β�−nβ/2(0−) = Mβ/2,�β�−nβ/2(0+) = Γ
(
�β� − β(n+1)

2

)−1

. When

β = 1 and n ≥ 1 is an odd integer, then M1/2,1−n/2(0) = Γ
(
1−n
2

)−1
= 0, which

explains why the heat kernel function (2.1) is smooth at x = 0.

Remark 4.3 (Wave equation case β = 2). By definition of Mλ,μ(z) in (4.4), the
parameter λ should be strictly less than 1. Hence, the Green functions Gβ(t, x)
and G∗

β(t, x) in (4.5) do not cover the case where β = 2. However, the wave
equation case β = 2 is a limiting case as β ↑ 2, which can be seen from Figure 3.
Another way to see this is through the Fourier transform (4.14). By letting β = 2
in (4.14), one has that∫

R

dx e−iξxG2(t, x) = tE2,2(−t2ξ2) =
sin(tξ)

ξ
,∫

R

dx e−iξxG∗
2(t, x) = E2,1(−t2ξ2) = cos(tξ),

which equal the Fourier transforms of the wave kernel functions: 1
21{|x|≤t} and

1
2 (δt(x) + δ−t(x)), respectively. Hence, in the limiting case, we have (2.2).

We draw some of these Green functions Gβ(1, x) in Figure 2. The range of x is
from −5 to 5. From these graphs, one can see that when β tends to 2, the Green
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(a) Graphs of Gβ(1, x)
in the linear scale.
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(b) Graphs of log10 Gβ(1, x).

Figure 2. Some graphs with β = 1/8, 1/2, 1, 3/2, 5/3 and 15/8.

(a) β = 6/5. (b) β = 3/2. (c) β = 15/8.

Figure 3. Graphs of the Green functions Gβ(t, x) for 1 < β < 2.

function tends to the wave kernel function 1
21{|x|≤1}. Note that these graphs are

plotted by concatenating the truncated summations for n ≤ 23 in the asymptotic
representation (4.8), and hence there are some truncation errors, which can be seen,
in these graphs.

In Figure 3, we draw some Green functions in space-time coordinates for the
fast diffusion equations (β ∈ ]1, 2[ ). The ranges for x and t are [−5, 5] and ]0, 5],
respectively. When β tends to 2, these graphs become closer to the wave kernel
function G2(t, x) =

1
21{|x|≤t}.

At the end of this section, we list some technical results used in the proof of
Lemma 4.1.

Lemma 4.4. The following integral holds:∫ ∞

0

dx xaMλ,μ(x) =
Γ (a+ 1)

Γ (λa+ μ)
, for a > −1, λ ∈ [0, 1[ , and μ ∈ C .

Proof. By the integral representation of the Wright function,

Wλ,μ(z) =
1

2πi

∫
Ha

dt

tμ
exp

(
t+ zt−λ

)
, λ > −1, μ ∈ C ,
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NONLINEAR STOCHASTIC TIME-FRACTIONAL DIFFUSION EQUATIONS 8513

where Ha denotes the Hankel contour (see [23, (F.2), on p. 238] for more details).
Notice that Mλ,μ(x) = W−λ,μ−λ(−x). Then∫ ∞

0

dx xaMλ,μ(x) =

∫ ∞

0

dx xa

[
1

2πi

∫
Ha

dt

tμ−λ
et−xtλ

]
=

1

2πi

∫
Ha

dt

[∫ ∞

0

dx e−xtλxa

]
et

tμ−λ

=
1

2πi

∫
Ha

dt
Γ(a+ 1)

tλa+λ

et

tμ−λ

=
Γ(a+ 1)

2πi

∫
Ha

dt
et

tλa+μ
=

Γ(a+ 1)

Γ(λa+ μ)
,

where we have used the definition of the Gamma function in the third equality
(which requires that a > −1) and in the last step we have used the Hankel integral
representation of the Gamma function 1

Γ(z) = 1
2πi

∫
Ha

dt ett−z; see, e.g., [28, 5.9.1,

p. 139]. �

Lemma 4.5. The Fourier transform of the function Mλ,μ(|x|) is

F
[
1

2
Mλ,μ(| · |)

]
(ξ) =

∫
R

dx e−ixξMλ,μ(|x|)

= E2λ,μ

(
−ξ2

)
, for all λ ∈ [0, 1[ and μ ∈ C .

Proof. By developing in series the cosine function and the moment formula in
Lemma 4.4,

F
[
1

2
Mλ,μ(| · |)

]
(ξ) =

∫ ∞

0

dx cos(ξx)Mλ,μ(x)

=

∞∑
n=0

(−1)n
ξ2n

(2n)!

∫ ∞

0

dx x2nMλ,μ(x)

=
∞∑

n=0

(
−ξ2

)n
Γ (2nλ+ μ)

= E2λ,μ

(
−ξ2

)
.

�

Theorem 4.6 (Bernstein’s theorem [35, Theorem 12a]). A necessary and sufficient
condition that f(x) should be completely monotonic in 0 ≤ x < +∞ is that f(x) =∫∞
0

e−xtdα(t), where α(t) is bounded and nondecreasing and the integral converges
for 0 ≤ x < +∞.

5. Calculations of K(t, x) and proof of Theorem 3.4

Let G : R+ × Rd �→ R with d ∈ N, d ≥ 1 be a Borel measurable function.

Assumption 5.1. The function G : R+ × Rd �→ R has the following properties:

(1) There is a nonnegative function G(t, x), called reference kernel function,
and constants C0 > 0, σ < 1 such that

G(t, x)2 ≤ C0

tσ
G(t, x) , for all (t, x) ∈ R+ × Rd.(5.1)
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(2) The reference kernel function G(t, x) satisfies the following sub-semigroup
property: for some constant C1 > 0,∫
Rd

dy G (t, x− y)G (s, y) ≤ C1 G (t+ s, x) , for all t, s > 0 and x ∈ Rd.(5.2)

Define

L0 (t, x) := G(t, x)2 , for all (t, x) ∈ R∗
+ × Rd .

Recall that “�” denotes the convolution in both space and time variables (space-
time convolution). For all n ∈ N∗ := N \ {0} and all (t, x) ∈ R∗

+ × Rd, define

Ln (t, x) := (L0 � · · · � L0)︸ ︷︷ ︸
n + 1 times of L0

(t, x),

K (t, x) :=
∞∑

n=0

Ln (t, x) .(5.3)

Denote

Bn (t;σ,C0, C1) := Cn
0 C

n−1
1

Γ (1− σ)n

Γ (n(1− σ))
tn(1−σ)−1 , for all n ≥ 0 .

For simplicity, we write Bn (t;σ,C0, C1) simply by Bn(t).

Proposition 5.2. Under Assumption 5.1, the following properties are true:
(i) Ln(t, x) is nonnegative and satisfies the following inequality:

Ln(t, x) ≤ Bn+1(t)G(t, x) , for all n ≥ 0 and (t, x) ∈ R∗
+ × Rd.(5.4)

Moreover, (5.4) becomes an equality if both (5.1) and (5.2) are equalities.
(ii) For all t > 0 and λ > 0, the following series

∑∞
n=1 Ln(t, x) converges uni-

formly over x ∈ Rd and hence K(t, x) in (5.3) is well-defined.
(iii) Bn(t) are nonnegative and for all m ∈ N∗,

∑∞
n=0 Bn(t)

1/m < +∞.
(iv) For all t ≥ 0 and x ∈ Rd,

K (t, x) ≤ G(t, x) γ

tσ
E1−σ,1−σ

(
γt1−σ

)
(5.5)

≤ C

tσ
G(t, x)

(
1 + tσ exp

(
γ

1
1−σ t

))
,(5.6)

where γ = C0C1Γ(1− σ) and the constant C = C (σ, γ) can be chosen as

C (σ, γ) := γ sup
t≥0

E1−σ,1−σ

(
γ t1−σ

)
1 + tσ exp

(
γ

1
1−σ t

) < +∞ .(5.7)

Moreover, (5.5) becomes equality if both (5.1) and (5.2) are equalities.
(v) If there exist a kernel function

¯
G(t, x) and some constants

¯
C0 > 0,

¯
C1 > 0,

and
¯
σ < 1 such that for all t, s > 0 and x ∈ Rd,

G(t, x)2 ≥
¯
C0 t−¯

σ

¯
G(t, x),

and
¯
G(t, x) satisfies the sup-semigroup property∫

Rd

dy
¯
G (t, x− y)

¯
G (s, y) ≥

¯
C1

¯
G (t+ s, x) ,
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then for all t ≥ 0 and x ∈ Rd,

K (t, x) ≥
¯
G(t, x) ¯

γ

t¯
σ
E1−

¯
σ,1−

¯
σ

(
¯
γt1−¯

σ
)

(5.8)

≥
¯
C

¯
G(t, x) exp

(
¯
γ

1
1−

¯
σ t

)
,(5.9)

where
¯
γ =

¯
C0

¯
C1Γ(1−

¯
σ) and

¯
C =

¯
C

(
¯
σ,
¯
γ
)
:=

¯
γ inf

t≥0

E1−
¯
σ,1−

¯
σ

(
¯
γ t1−¯

σ
)

t¯
σ exp

(
¯
γ

1
1−

¯
σ t

) > 0 .

Proof. (i) The nonnegativity is clear. The case n = 0 is trivially true. Suppose
that the relation (5.4) holds up to n− 1. Then by the Beta integral,

Ln(t, x) =

∫ t

0

ds

∫
Rd

dy Ln−1 (t− s, x− y)G2 (s, y)

≤ C0

∫ t

0

ds Bn(t− s)s−σ

∫
Rd

dy G (t− s, x− y)G (s, y)

≤ Cn+1
0 Cn

1 G(t, x) Γ(1− σ)n

Γ(n(1− σ))

∫ t

0

ds (t− s)n(1−σ)−1s−σ

= Cn+1
0 Cn

1

Γ(1− σ)n+1

Γ((n+ 1)(1− σ))
t(n+1)(1−σ)−1 G(t, x)

= Bn+1(t)G(t, x) .

(ii) It is a special case of (iii).
(iii) The nonnegativity is clear. By (5.4),

Ln(t, x) ≤ Bn+1(t)t
−σ sup

x∈Rd

G(t, x) < +∞ .

Thus, if the series
∑

n Bn(t)
1/m converges, then it does so uniformly over x ∈ Rd.

Denote β := 1− σ. Use the ratio test(
Bn(t)

Bn−1(t)

)1/m

=
(
C0C1Γ (β) tβ

)1/m (
Γ ((n− 1)(1− σ))

Γ(n(1− σ))

)1/m

.

By the asymptotic expansion of the Gamma function ([28, 5.11.2, p. 140]),

Γ ((n− 1)(1− σ))

Γ (n(1− σ))
≈

(
e

β

)β (
1− 1

n

)(n−1)β
1

nβ
≈ 1

(βn)β

for large n. Now clearly, β > 0 since σ < 1. Hence, for all t > 0 and for large n,(
Bn(t)

Bn−1(t)

)1/m

≈
(
C0C1Γ (β) tβ

)1/m 1

(βn)β/m
,

which tends to zero as n → +∞.
(iv) The bound (5.5) is because

∞∑
k=1

zk

Γ(αk)
= zEα,α(z) ,(5.10)
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and the bounds in (i):

K (t, x) ≤ G(t, x)
∞∑
n=1

Bn (t) =
1

C1t
G(t, x)

∞∑
n=1

(
C0C1Γ(1− σ) t1−σ

)n
Γ(n(1− σ))

= C0 Γ(1− σ) t−σ G(t, x) E1−σ,1−σ

(
C0C1Γ(1− σ)t1−σ

)
.

As for (5.6), we only need to show that the constant C defined in (5.7) is finite.
Let

f(t) =
E1−σ,1−σ

(
γ t1−σ

)
1 + tσ exp

(
γ

1
1−σ t

) .

By Lemma 5.9 with real nonnegative value z = γt1−σ and p = 1:

γE1−σ,1−σ

(
γ t1−σ

)
=

1

1− σ
γ

1
1−σ tσ exp

(
γ

1
1−σ t

)
+O

(
1

|t|1−σ

)
, t → +∞ ,

we see that limt→+∞ f(t) = 1
1−σγ

1
1−σ . Then because the Mittag-Leffler function is

an entire function on complex plain [14, Theorem 4.1, p. 68], we can conclude that
supt≥0 f(t) < +∞.

(v) The proof is similar to (i) and (iv). We only need to show that
¯
C is strictly

positive. Because the function g(t) = E−1
1−

¯
σ,1−

¯
σ

(
¯
γ t1−¯

σ
)
t¯
σ exp

(
¯
γ

1
1−

¯
σ t

)
is contin-

uous over t ∈ [0,+∞] with g(0) = 0 and limt→+∞ g(t) = (1−
¯
σ)

¯
γ

¯
σ

¯
σ−1 < +∞, this

function is bounded from above for t ∈ [0,+∞] and hence inft≥0 g
−1(t) > 0. This

completes the proof of Proposition 5.2. �

Example 5.3. For the heat kernel pν(t, x) = (2πνt)−1/2 exp
(
− x2

2νt

)
with ν > 0,

Assumption 5.1 holds with both inequalities (5.1) and (5.2) replaced by equalities,
and

C0 =
1√
4πν

, σ =
1

2
, G(t, x) = pν/2(t, x), C1 = 1.

Then, γ = (4ν)−1/2. Therefore, by (4.2) and erfc(−x) = 2Φ(
√
2x) where Φ(x)

is the distribution function of the standard normal distribution, Proposition 5.2
implies that

K(t, x) =
G(t, x)√

4νt

[
1√
π
+

√
t√
4ν

erfc

(
−

√
t√
4ν

)
e

t
4ν

]
= p ν

2
(t, x)

[
1√
4πνt

+
1

2ν
Φ

( √
t√
2ν

)
e

t
4ν

]
,

which recovers the results in [6].

Example 5.4. Let us consider the following SPDE:⎧⎨⎩
(

∂
∂t −

∂2

∂x2

)2

u(t, x) = ρ(u(t, x))Ẇ (t, x), (t, x) ∈ R∗
+ × R,

u(0, ·) = μ(·).

The Green function is G(t, x) =
√
t√
4π

exp
(
−x2

4t

)
; see [31, Section 9.2.5-2]. Assump-

tion 5.1 holds with both inequalities (5.1) and (5.2) replaced by equalities, and

C0 =
1√
8π

, σ = −3

2
, G(t, x) = 1√

2πt
exp

(
−x2

2t

)
, C1 = 1.
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Then, γ = 1√
8π

Γ(5/2) = 3
√
2

16 . Therefore, Proposition 5.2 implies that

K(t, x) =
3
√
2

16
t3/2 G(t, x) E5/2,5/2

(
3
√
2

26
t5/2

)
.

In particular, if ρ(u) = u, then E
(
u2(t, x)

)
= J2

0 (t, x) + (J2
0 � K)(t, x), where

J0(t, x) = (μ ∗G(t, ·))(x). Note that the initial data can be more general than the
SHE (1.3): It can be any distribution μ such that it is the (distributional) derivative
of some measures in MH(R), i.e., for some μ0 ∈ MH(R), μ = μ′

0. More details of
this SPDE, which will not be pursued here, are left to interested readers.

Here are three natural choices of the reference kernel functions G(t, x):
(1) the Gaussian kernel function

Gg(t, x) := (4πt)
−d/2

exp

(
−|x|2

4t

)
, for all (t, x) ∈ R+ × Rd, d ≥ 1,

where |x|2 = x2
1 + · · ·+ x2

d;
(2) the Poisson kernel function:

Gp(t, x) := cn
t

(t2 + |x|2)(d+1)/2
, for all (t, x) ∈ R+ × Rd, d ≥ 1,

where cn = π−(n+1)/2 Γ((n+ 1)/2);
(3) the exponential kernel function Ge,β(t, x) defined in (3.6).

Clearly, we have the following scaling properties for these reference kernel func-
tions:

Gg(t, x) = t−d/2 Gg(1, t
−1/2 x),

Gp(t, x) = t−d Gp(1, t
−1 x),

Ge,β(t, x) = t−β/2Ge,β(1, t
−β/2x).

Both Gg(t, x) and Gp(t, x) satisfy part (2) of Assumption 5.1 with C1 = 1 and “≤”
replaced by “=”. By Lemma 5.10 below, Ge,β(t, x) satisfies part (2) of Assumption

5.1 with C1 = Ĉβ, where Ĉβ is defined in (3.8).

Proposition 5.5 (Gaussian reference kernel). Suppose the function G : R+×Rd �→
R satisfies the following two properties:

(i) The scaling property: for some constants γ1 ∈ R and γ2 ≥ 1/2,

G(t, x) = tγ1G
(
1,

x

tγ2

)
, for all (t, x) ∈ R+ × Rd.

(ii) The function x �→ G(1, x) is bounded such that supx∈Rd
G(1,x)2

Gg(1,x)
< +∞.

Then G(t, x) satisfies Assumption 5.1 with G(t, x) = Gg(t
2γ2 , x) and

C0 = sup
x∈Rd

G(1, x)2

Gg(1, x)
, C1 = 2d(γ2−1/2), and σ = −(2γ1 + dγ2).(5.11)

Proof. Notice that by the scaling properties of Gg(t, x) and G(t, x), we have that

sup
(t,x)∈R+×Rd

G(t, x)2

t−σG(t, x) = sup
(t,x)∈R+×Rd

G(t, x)2

t−σGg(t2γ2 , x)
= sup

y∈Rd

G(1, y)2

Gg(1, y)
,
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which is finite by (ii). Hence, part (1) of Assumption 5.1 is satisfied with the
constants C0 and σ defined in (5.11). As for part (2) of Assumption 5.1, by the
semigroup property of Gg(t, x), we have∫
Rd

dy G(t, x− y)G(s, y) =
∫
Rd

dy Gg

(
t2γ2 , y

)
Gg

(
s2γ2 , x− y

)
= Gg

(
t2γ2 + s2γ2 , x

)
.

Notice that the function [0, 1] � r �→ f(r) = (1 − r)2γ2 + r2γ2 is convex because
2γ2 ≥ 1. By solving f ′(r) = 0, we find that

min
r∈[0,1]

f(r) = f(1/2) = 21−2γ2 and max
r∈[0,1]

f(r) = f(1) = f(0) = 1 .

Hence,

21−2γ2(t+ s)2γ2 ≤ t2γ2 + s2γ2 = (t+ s)2γ2f

(
s

t+ s

)
≤ (t+ s)2γ2 .(5.12)

Finally,

Gg

(
t2γ2 + s2γ2 , x

)
=

[
4π

(
t2γ2 + s2γ2

)]−d/2
exp

(
− |x|2
4 (t2γ2 + s2γ2)

)
≤ 2d(γ2−1/2)

[
4π

(
(t+ s)2γ2

)]−d/2
exp

(
− |x|2
4(t+ s)2γ2

)
= 2d(γ2−1/2) G

(
(t+ s)2γ2 , x

)
,

which completes the proof of Proposition 5.5. �

We will not use the Poisson reference kernel in this paper. We prove the following
result for the future reference.

Proposition 5.6 (Poisson reference kernel). Suppose the function G : R+×Rd �→ R

satisfies the following two properties:

(i) The scaling property: for some constants γ1 ∈ R and 0 < γ2 ≤ 1,

G(t, x) = tγ1G
(
1,

x

tγ2

)
, for all (t, x) ∈ R+ × Rd.

(ii) The function x �→ G(1, x) is bounded such that supx∈Rd
G(1,x)2

Gp(1,x)
< +∞.

Then G(t, x) satisfies Assumption 5.1 with G(t, x) = Gp(t
γ2 , x) and

C0 = sup
x∈Rd

G(1, x)2

Gp(1, x)
, C1 = 21−γ2 , and σ = −(2γ1 + dγ2).(5.13)

Proof. Notice that by the scaling properties of Gp(t, x) and G(t, x), we have that

sup
(t,x)∈R+×Rd

G(t, x)2

t−σG(t, x) = sup
(t,x)∈R+×Rd

G(t, x)2

t−σGp(tγ2 , x)
= sup

y∈Rd

G(1, y)2

Gp(1, y)
,

which is finite due to (ii). Hence, part (1) of Assumption 5.1 is satisfied with the
constants C0 and σ defined in (5.13). As for part (2) of Assumption 5.1, by the
semigroup property of Gp(t, x), we have∫
Rd

dy G(t, x− y)G(s, y) =
∫
Rd

dy Gp

(
t2γ2 , y

)
Gp

(
s2γ2 , x− y

)
= Gp

(
t2γ2 + s2γ2 , x

)
.

Then because 0 < γ2 ≤ 1,

(t+ s)γ2 ≤ tγ2 + sγ2 ≤ 21−γ2(t+ s)γ2 .(5.14)
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Therefore,

Gp (t
γ2 + sγ2 , x) =

cn (t
γ2 + sγ2)

((tγ2 + sγ2)2 + |x|2)(d+1)/2

≤ cn 21−γ2 (t+ s)γ2

((t+ s)2γ2 + |x|2)(d+1)/2
= 21−γ2 Gp((t+ s)γ2 , x),

which completes the proof of Proposition 5.6. �

Proposition 5.7 (Exponential reference kernel). Let β ∈ ]0, 2]. Suppose the func-
tion G : R+ × R �→ R satisfies the following two properties:

(i) The scaling property:

G(t, x) = t−β/2G
(
1,

x

tβ/2

)
, for all (t, x) ∈ R+ × R.

(ii) The function x �→ G(1, x) is bounded such that supx∈R

G(1,x)2

Ge,β(1,x)
< +∞.

Then G(t, x) satisfies Assumption 5.1 with G(t, x) = Ge,β(t, x) and

C0 = sup
x∈R

G(1, x)2

Ge,β(1, x)
, C1 = Ĉβ , and σ =

β

2
,(5.15)

where Ĉβ is defined in (3.8).

Proof. Notice that by the scaling properties of Ge,β(t, x) and G(t, x), we have that

sup
(t,x)∈R+×R

G(t, x)2

t−σG(t, x) = sup
y∈R

G(1, y)2

Ge,β(1, y)
,

which is finite due to (ii). Hence, part (1) of Assumption 5.1 is satisfied with the
constants C0 and σ defined in (5.15). Part (2) of Assumption 5.1 is due to Lemma

5.10 below with C1 = Ĉβ . This completes the proof of Proposition 5.7. �

Now we apply Proposition 5.2 to the Green functions Gβ(t, x) with 0 < β < 2.
More precisely, we will apply Proposition 5.5 (resp. 5.7) with Gβ(t, x) defined in
(3.5) in the case of fast (resp. slow) diffusions for the upper bounds of K(t, x),
and Proposition 5.5 with

¯
Gβ(t, x) defined in (3.7) in the case of slow diffusion for

the lower bound of K(t, x). Recall the constants Ψβ and
¯
Ψβ defined in (3.10) and

(3.11), respectively, and the constant C̃β defined in (3.9).

Proposition 5.8. (1) Proposition 5.2(i)–(iv) hold for Gβ(t, x) with β ∈ ]0, 2[ and

d = 1 , σ = β/2 + 2(1− �β�), G(t, x) = Gβ(t, x) , C0 = Ψβ , C1 = C̃β .

(2) Proposition 5.2(v) holds for Gβ(t, x) with β ∈ ]0, 1[ and

d = 1,
¯
σ =

β

2
− 1,

¯
G(t, x) =

¯
Gβ(t, x),

¯
C0 =

¯
Ψβ ,

¯
C1 = 2

β−2
4 .

Proof. (1) We begin with the case where β ∈ ]1, 2[ . By (4.6), Gβ(t, x) satisfies the
scaling property with γ2 = β/2 ≥ 1/2 and γ1 = 1− β/2. Notice that

Ψβ = sup
y≥0

√
π

2
exp

(
y2/4

)
M2

β/2 (y) .
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Since the parameter c in (4.8) is strictly bigger than 2 (see also Figure 1), we see
that

lim
y→+∞

√
π

2
exp

(
y2/4

)
M2

β/2 (y) = 0 .

Since the function y �→ exp
(
y2/2

)
M2

β/2 (y) is an entire function, we see that the

above supremum does exist. Therefore, one can apply Proposition 5.5 with d = 1,
C0 = Ψβ , C1 = 2(β−1)/2, σ = β/2− 2 < −1, and the above γ1 and γ2.

The proof for the slow diffusion equations can be proved similarly using Proposi-

tion 5.7 with γ2 = −γ1 = β/2 ≤ 1/2, C0 = Ψβ = supy≥0 1/2 eyM2
β/2 (y), C1 = Ĉβ,

and σ = β/2 < 1.
(2) We claim that if β ∈ ]0, 1[ , then for all (t, x) ∈ R+ × R and s ≥ 0, we have

that

G2
β(t, x) ≥ ¯

Ψβ t1−β/2

¯
Gβ(t, x),(5.16) ∫

R

dy
¯
Gβ(t, x− y)

¯
Gβ(s, y) ≥ 2

β−2
4

¯
Gβ(t+ s, x).(5.17)

By the scaling property (4.6), sup(t,x)∈R+×R

t1−β/2

¯
Gβ(t,x)

G2
β(t,x)

= supy∈R ¯
Gβ(1,y)

G2
β(1,y)

, which

is finite by the same reasoning as above, where the parameter c in (4.11) is strictly
less than 2 in this case. Thus,

¯
C0 =

¯
Φβ > 0 and (5.16) follows with

¯
σ = β/2− 1 <

−1/2. The inequality (5.17) is proved by the semigroup property of the heat kernel
function and (5.14). So

¯
C1 = 2(β−2)/4. Then apply Proposition 5.5. This completes

the proof of Proposition 5.8. �

At the end of this section, we list two technical results that are used in this
section.

Lemma 5.9 (Theorem 1.3, p. 32 in [30]). If 0 < α < 2, β is an arbitrary complex
number and μ is an arbitrary real number such that πα/2 < μ < π ∧ (πα), then for
an arbitrary integer p ≥ 1 the following expression holds:

Eα,β(z) =
1

α
z(1−β)/α exp

(
z1/α

)
−

p∑
k=1

z−k

Γ(β − αk)
+O

(
|z|−1−p

)
, |z| → ∞, | arg(z)| ≤ μ .

Lemma 5.10. Suppose β ∈ ]0, 2]. The exponential reference kernel function
Ge,β(t, x) defined in (3.6) satisfies the sub-semigroup property, i.e., for all t ≥ 0,
s ≥ 0 and x ∈ R,

(Ge,β(t, ·) ∗ Ge,β(s, ·)) (x) ≤ Ĉβ Ge,β (t+ s, x) ,

where the constant Ĉβ is defined in (3.8).

Proof. Fix a > b > 0 and let θ = β/2. Because

∫
R

1

4aθbθ
exp

(
−|x− y|

aθ
− |y|

bθ

)
dy =

1

2(aθ + bθ)

aθ exp
(
− |x|

aθ

)
− bθ exp

(
− |x|

bθ

)
aθ − bθ

,
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we only need to prove that

aθ exp
(
− |x|

aθ

)
− bθ exp

(
− |x|

bθ

)
aθ − bθ

≤ Ĉ2θ exp

(
− |x|
(a+ b)θ

)
, for all (t, x) ∈ R+ × R.

(5.18)

By setting r = b/a and η = |x|/aθ, (5.18) is equivalent to

e−η − rθe−η/rθ

1− rθ
≤ Ĉ2θ exp

(
− η

(1 + r)θ

)
, for all r ∈]0, 1[ and η ≥ 0 .

Denote

f (r, η) =
e−η − rθe−η/rθ

1− rθ
exp

(
η

(1 + r)θ

)
.

Some simple calculations show that

lim
r→0+

f (r, η) = 1 and lim
r→1−

f (r, η) = (1 + η)e−(1−2−θ)η ,

and also

lim
η→0+

f (r, η) = 1 and lim
η→+∞

f (r, η) = 0 .

Fix r ∈ ]0, 1[ . By solving

∂f (r, η)

∂η
=

eη(−r−β+(1+r)−β−1)
(
eη

(
(1 + r)β − rβ

)
−

(
(1 + r)β − 1

)
eη/r

β
)

(1 + r)β(1− rβ)
= 0,

which has one finite solution

η = − rθ

1− rθ
log

(1 + r)θ − 1

(1 + r)θ − rθ
,

we find the local maximum of the function η �→ f (r, η). This local maximum is
indeed the global maximum. Hence

f (r, η) ≤ h(r) :=
(1 + r)θ

(1 + r)θ − 1
exp

⎡⎢⎣1−
(

r
1+r

)θ

1− rθ
log

(
1− 1− rθ

(1 + r)θ − rθ

)⎤⎥⎦ .

Since h′(r) ≥ 0 for all r ∈ ]0, 1[ and θ ∈ ]0, 1], we have that

h(r) ≤ lim
r→1

h(r) =
2θ

2θ − 1
exp

(
− 1

2θ

)
= Ĉ2θ.

Therefore, f (r, β) ≤ Ĉ2θ. This proves (5.18).

Apply (5.18) with a = (t ∨ s)β/2, b = (t ∧ s)β/2 and θ = β/2 ∈ ]0, 1], and use
(t+ s)β/2 ≤ tβ/2 + sβ/2 to obtain∫

R

dy Ge,β(t, x− y) Ge,β(s, y) ≤ Ĉβ Ge,β(t+ s, x),

which completes the proof of Lemma 5.10. �
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β
21

−3/2

1/2

f(β) = 4(1−�β�)+β
2(2−β)

Figure 4. Plot of the function f (β).

6. Proof of Theorem 3.1

The proof of Theorem 3.1 will be presented at the end of this section. Before
proving Theorem 3.1, we need several results. The first one is related to the tails
of the Green functions. The corresponding results for the SHE, the SFHE, and the
SWE can be found in [6, Proposition 5.3], [8, Proposition 4.7], and [7, Lemma 3.2],
respectively. First, we need some notation: for τ > 0, α > 0 and (t, x) ∈ R∗

+ × R,
denote

Bt,x,τ,α :=
{
(t′, x′) ∈ R∗

+ × R : 0 ≤ t′ ≤ t+ τ, |x− x′| ≤ α
}
.

Proposition 6.1. Suppose that β ∈ ]0, 2[ . Then for all (t, x) ∈ R∗
+ × R, there

exists a constant A > 0 such that for all (t′, x′) ∈ Bt,x,1/2,1 and all s ∈ [0, t′[ and
y ∈ R with |y| ≥ A, we have that Gβ (t

′ − s, x′ − y) ≤ Gβ (t+ 1− s, x− y).

Proof. Fix (t, x) ∈ R∗
+ ×R. By the scaling and asymptotic properties of the Green

function Gβ(·, ·), we know that

Gβ(t+ 1− s, x− y)

Gβ(t′ − s, x′ − y)
=

(
t′ − s

t+ 1− s

)β/2+1−�β� Gβ

(
1, x−y

(t+1−s)β/2

)
Gβ

(
1, x′−y

(t′−s)β/2

)
≈

(
t′ − s

t+ 1− s

) β
2 +1−�β�+ aβ

2 |x− y|a
|x′ − y|a

× exp

(
b|x′ − y|c
(t′ − s)βc/2

− b|x− y|c
(t+ 1− s)βc/2

)
,

as |y| → +∞ where a = 1+β−2�β�
2−β , b ∈ ]0, 1[ and c > 1 (see (4.10), (4.12) and

(4.11)). Denote

f (β) =
β(1 + a)

2
+ 1− �β� = 4(1− �β�) + β

2(2− β)
,

which is plotted in Figure 4. Simple calculations show that f (β) > 0 if 0 < β ≤ 1,
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and f (β) < 0 if 1 < β < 2. Notice that

t+ 1− s

t′ − s
= 1 +

t+ 1− t′

t′ − s
≥ 1 +

t+ 1− t′

t′
≥ t+ 1

t+ 1/2
= 1 +

1

2t+ 1
> 1 .(6.1)

Hence, if 1 < β < 2, then(
t′ − s

t+ 1− s

)f(β)

=

(
t+ 1− s

t′ − s

)|f(β)|
≥ 1 .

If 0 < β ≤ 1, we have that(
t′ − s

t+ 1− s

)f(β)

≥
(
t′ − s

t+ 1

)|f(β)|
= (t+ 1)−|f(β)| exp (|f (β)| log(t′ − s)) .

Assume n > 1. When |y| ≥ |x|+ n, we have |x− y| > n and then

n

n+ 1
≤ |x− y|

|x− y|+ 1
≤ |x− y|

|x′ − y| ≤
|x− y|

|x− y| − 1
≤ n

n− 1
.

Since n
n+1 > n−1

n for all n > 1, we have that

|x− y|a
|x′ − y|a ≥

(
1− 1

n

)|a|
,(6.2)

which holds for all a ∈ R.
The above bounds (6.1) and (6.2) imply that(

1− 1

n

)
|x′ − y|c

(t′ − s)βc/2
≥

(
1 +

1

2t+ 1

)βc/2 (
1− 1

n

)c+1 |x− y|c
(t+ 1− s)βc/2

.

By choosing n large enough, in particular,

n >

(
1−

[
1 +

1

2t+ 1

]− βc
2(c+1)

)−1

,

we have that

η :=

(
1 +

1

2t+ 1

)βc/2 (
1− 1

n

)c+1

> 1 .

Thus,

exp

(
b|x′ − y|c
(t′ − s)βc/2

− b|x− y|c
(t+ 1− s)βc/2

)
≥ exp

(
b(η − 1)

|x− y|c
(t+ 1− s)βc/2

+
b|x′ − y|c

n(t′ − s)βc/2

)
≥ exp

(
b(η − 1)

|x− y|c
(t+ 1)βc/2

+
b (n− 1)c

n(t′ − s)βc/2

)
.

Finally, if 1 < β < 2, then

Gβ(t+ 1− s, x− y)

Gβ(t′ − s, x′ − y)

≥
(
1− 1

n

)|a|
exp

(
b(η − 1)

|x− y|c
(t+ 1)βc/2

+
b (n− 1)c

n(t+ 1)βc/2

)
→ +∞ ,
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as |y| → +∞. Hence, we can choose a large constant A, such that for all |y| ≥ A,
the inequality

Gβ(t+ 1− s, x− y)

Gβ(t′ − s, x′ − y)
> 1

holds for all (t′, x′) ∈ Bt,x,1/2,1 and s ∈ [0, t′]. If 0 < β ≤ 1, then

Gβ(t+ 1− s, x− y)

Gβ(t′ − s, x′ − y)
≥ (t+ 1)−f(β)

(
1− 1

n

)|a|

× exp

(
b(η − 1)

|x− y|c
(t+ 1)βc/2

+
b (n− 1)c

n(t′ − s)βc/2
+ f (β) log(t′ − s)

)
.

The function

g(t) =
C1

t
+ C2 log t , for t > 0 and C1, C2 > 0 ,

has its global minimum at t0 := C1/C2:

min
t∈R

∗
+

g(t) = g (t0) = C2 (1 + log (C1/C2)) ,

because g′(t) = C2t
−2 (t− t0), which is negative when t < t0 and positive when

t > t0. Hence,

b (n− 1)
c

n(t′ − s)βc/2
+ f (β) log(t′ − s) =

b (n− 1)
c

n(t′ − s)βc/2
+

2f (β)

βc
log

[
(t′ − s)βc/2

]
≥ 2f (β)

βc

(
1 + log

(
2f (β)n

bβc(n− 1)c

))
.

Therefore,

Gβ(t+ 1− s, x− y)

Gβ(t′ − s, x′ − y)
≥ (t+ 1)−f(β)

(
1− 1

n

)|a|

× exp

(
b(η − 1)

|x− y|c
(t+ 1)βc/2

+
2f (β)

βc

(
1 + log

(
2f (β)n

bβc(n− 1)c

)))
→ +∞ ,

as |y| → +∞. We can choose a large constant A, such that for all |y| ≥ A, all
(t′, x′) ∈ Bt,x,1/2,1 and s ∈ [0, t′],

Gβ(t+ 1− s, x− y)

Gβ(t′ − s, x′ − y)
> 1.

This completes the proof of Proposition 6.1. �

The second set of results, Propositions 6.3 and 6.4, give some continuity proper-
ties of the Green functions. We need a bound of the two-parameter Mittag-Leffler
functions, which will be used in the proof of Proposition 6.3.

Lemma 6.2. If 0 < α < 1 and β ≥ α, then there exists a constant Cα,β > 0 such
that

0 < Eα,β (−xα) ≤ Cα,β

1 + xα
, for all x ≥ 0 .(6.3)

Proof. Nonnegativity is due to (4.3). The upper bound is due to [30, Theorem 1.6,
on p. 35] with z = −xα. Clearly arg(z) = π satisfies the required condition. �
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Proposition 6.3. Suppose 0 < β < 1. Let Cβ,2 be the universal constant in Lemma
6.2. Then the following two properties hold:

(i) For all t > 0 and x, y ∈ R,∫∫
R+×R

drdz (Gβ (t− r, x− z)−Gβ (t− r, y − z))2 =
4Cβ,2

π
t1−β |x− y|.(6.4)

(ii) For all s, t ∈ R∗
+ with s ≤ t, and x ∈ R,∫ s

0

dr

∫
R

dz (Gβ (t− r, x− z)−Gβ (s− r, x− z))
2
= 2Cβ,2 (t− s)1−β/2 ,(6.5)

and ∫ t

s

dr

∫
R

dz G2
β (t− r, x− z) =

Cβ,2

2
(t− s)1−β/2 .(6.6)

Proof. (i) Fix t > 0. By Plancherel’s theorem and (4.14), the left-hand side (l.h.s.)
of (6.4) is equal to

1

2π

∫ t

0

dr

∫
R

dξ
∣∣e−iξxEβ,1

(
−(t− r)βξ2

)
− e−iξyEβ,1

(
−(t− r)βξ2

)∣∣2
=

1

2π

∫ t

0

dr

∫
R

dξ E2
β,1

(
−(t− r)βξ2

) ∣∣e−iξx − e−iξy
∣∣2

=
1

π

∫
R

dξ (1− cos(ξ(x− y)))

∫ t

0

dr E2
β,1

(
−(t− r)βξ2

)
.

By (4.3),∫ t

0

dr E2
β,1

(
−(t− r)βξ2

)
≤ Eβ,1(0)

∫ t

0

dr Eβ,1

(
−(t− r)βξ2

)
= t Eβ,2

(
−tβξ2

)
,

where the last equality can be obtained by integration term-by-term (see also [30,
(1.99), p. 24]). Then use the bound (6.3) and the fact that 1− cos(x) ≤ 2∧

(
x2/2

)
for all x ∈ R to see that the l.h.s. of (6.4) is bounded by

Cβ,2t
1−β

π

∫
R

dξ
2 ∧ [(x− y)ξ/

√
2 ]2

ξ2
=

√
2 Cβ,2t

1−β

π
|x− y|

∫ ∞

0

du
2 ∧ u2

u2

=
4Cβ,2t

1−β

π
|x− y|.

(ii) Denote the l.h.s. of (6.5) by I. Apply Plancherel’s theorem and use (4.3) to
obtain

I =
1

2π

∫ s

0

dr

∫
R

dξ
∣∣e−iξxEβ,1

(
−(t− r)βξ2

)
− e−iξxEβ,1

(
−(s− r)βξ2

)∣∣2
=

1

2π

∫ s

0

dr

∫
R

dξ
∣∣Eβ,1

(
−(t− r)βξ2

)
− Eβ,1

(
−(s− r)βξ2

)∣∣2
≤ 1

2π

∫ s

0

dr

∫
R

dξ 2Eβ,1(0)
[
Eβ,1

(
−(t− r)βξ2

)
− Eβ,1

(
−(s− r)βξ2

)]
.

Integration term-by-term gives that∫ s

0

dr Eβ,1

(
−(t− r)βξ2

)
=

∫ t

t−s

dr Eβ,1

(
−rβξ2

)
= t Eβ,2

(
−tβξ2

)
− (t− s)Eβ,2

(
−(t− s)βξ2

)
.
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Hence, by (4.3) again,

I ≤ 1

π

∫
R

dξ
(
tEβ,2

(
−tβξ2

)
− sEβ,2

(
−sβξ2

)
− (t− s)Eβ,2

(
−(t− s)βξ2

))
≤ 1

π
(t− s)

∫
R

dξ
(
Eβ,2

(
−tβξ2

)
+ Eβ,2

(
−(t− s)βξ2

))
.

Then by the bound in (6.3) and the integral
∫
R
dξ 1

1+c2ξ2 = π/|c| for c �= 0, we find

that

I ≤ Cβ,2(t− s)

(
1

tβ/2
+

1

(t− s)β/2

)
≤ 2Cβ,2(t− s)1−β/2.

As for (6.6), by similar reasoning, we have∫ t

s

dr

∫
R

dz G2
β (t− r, x− z) ≤ 1

2π

∫ t

s

dr

∫
R

dξ E2
β,1

(
−(t− r)βξ2

)
≤ 1

2π

∫ t

s

dr

∫
R

dξ Eβ,1

(
−(t− r)βξ2

)
≤ t− s

2π

∫
R

dξ Eβ,2

(
−(t− s)βξ2

)
≤ t− s

2π

∫
R

dξ
Cβ,2

1 + (t− s)βξ2
=

Cβ,2

2
(t− s)1−β/2 ,

which completes the proof of Proposition 6.3. �

For the fast diffusion equations, we are only able to prove the following less
precise results in Proposition 6.4 due to the lack of complete monotonicity for
Eα,β(−x) with α > 1; see (4.3) for the necessary and sufficient conditions for
Eα,β(−x) to be completely monotonic.

Proposition 6.4. For all (t, x) ∈ R+ × R and 1 < β < 2, we have

lim
(t′,x′)→(t,x)

∫∫
R+×R

dsdy (Gβ (t
′ − s, x′ − y)−Gβ (t− s, x− y))

2
= 0.

Proof. We only need to consider the case where t > 0. Fix (t, x) ∈ R∗
+×R. Denote

Λ := supx∈R
Gβ(1, x). We are going to apply the Lebesgue dominated convergence

theorem. Clearly, by the continuity of the Green functions, for all (s, y) ∈ R∗
+ ×R,

Gβ (t
′ − s, x′ − y)−Gβ (t− s, x− y) → 0 , as (t′, x′) → (t, x).

We need to find an integrable bound. Choose A > 0 according to Proposition 6.1
and suppose that (t′, x′) ∈ Bt,x,1/2,1. If |y| > A, since 1− β/2 > 0, by Proposition
6.1,

|Gβ (t
′ − s, x′ − y)−Gβ (t− s, x− y)|2 ≤ 4G2

β (t+ 1− s, x− y)

≤ 4Λ(t+ 1− s)1−β/2Gβ (t+ 1− s, x− y)

≤ 4Λ(t+ 1)1−β/2Gβ (t+ 1− s, x− y) .

If |y| ≤ A, we have that

|Gβ (t
′ − s, x′ − y)−Gβ (t− s, x− y)|2 ≤ 2G2

β (t
′ − s, x′ − y) + 2G2

β (t− s, x− y)

≤ 2Λ2
[
(t′ − s)2−β + (t− s)2−β

]
≤ 4Λ2(t+ 1)2−β .
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Hence,

|Gβ (t
′ − s, x′ − y)−Gβ (t− s, x− y)|2

≤ 4Λ(t+ 1)1−β/2Gβ (t+ 1−s, x−y) 1{|y|>A}+4Λ2(t+ 1)2−β1{|y|<A, 0≤s≤t+1} .

Denote this upper bound by f(s, y). Clearly, this upper bound is integrable:∫
R+

ds

∫
R

dy f(s, y) ≤4Λ(t+ 1)1−β/2

∫∫
R+×R

dsdy Gβ (t+ 1− s, x− y)

+ 4Λ2(t+ 1)2−β

∫∫
[0,t+1]×[−A,A]

dsdy

=2Λ(t+ 1)3−β/2 + 8AΛ2(t+ 1)3−β < +∞ .

Therefore, this proposition is proved by the Lebesgue dominated convergence the-
orem. �

The third result, Proposition 6.6, is about solutions to the homogeneous equa-
tion. We need to prove a lemma first. Recall the function fη(x) defined in (1.7).

Lemma 6.5. Suppose β ∈ ]0, 2[ . Let b ∈ ]0, 1[ be the constant defined in (4.12).
Then for all η > 0, the three functions

fη

( x

tβ/2

)
, Gβ(t, x) f

−1
b

( x

tβ/2

)
, and G∗

β(t, x) f
−1
b

( x

tβ/2

)
are Lipschitz continuous over R∗

+ × R; that is, for all x, y ∈ R and t, s ≥ ε > 0,
there exists a constant Cε > 0 such that∣∣∣fη ( x

tβ/2

)
− fη

( y

sβ/2

)∣∣∣ ≤ Cε (|x− y|+ |t− s|) ,(6.7) ∣∣∣Gβ(t, x)f
−1
b

( x

tβ/2

)
−Gβ(s, y)f

−1
b

( y

sβ/2

)∣∣∣ ≤ Cε (|x− y|+ |t− s|) ,(6.8) ∣∣∣G∗
β(t, x)f

−1
b

( x

tβ/2

)
−G∗

β(s, y)f
−1
b

( y

sβ/2

)∣∣∣ ≤ Cε (|x− y|+ |t− s|) .(6.9)

Proof. (i) We first prove (6.7). Denote

g(t, x) = fη

( x

tβ/2

)
= exp

(
− η

2tβc/2
|x|c

)
,

where c = 2
2−β . Fix x �= 0. Clearly,∣∣∣∣ ∂

∂x
g(t, x)

∣∣∣∣ = η c|x|c−1

2 tβc/2
g(t, x) ≤ c η

2 tβ/2
sup
y∈R

|y|c−1fη(y)

and ∣∣∣∣ ∂∂tg(t, x)
∣∣∣∣ = ηβc|x|c

4 tβc/2−1
g(t, x) ≤ η β c

4 t
sup
y∈R

|y|cfη(y) .

Note that the two suprema are finite because c > 1. Hence, by the mean value
theorem,

|g(t, x)− g(s, y)| ≤ |g(t, x)− g(t, y)|+ |g(t, y)− g(s, y)|

≤ C1

εβ/2
|x− y|+ C2

ε
|t− s|

for xy ≥ 0 (i.e., x and y have the same sign) and t, s ≥ ε > 0, where

C1 =
η

2− β
sup
y∈R

|y|
β

2−β fη(y) and C2 =
ηβ

2(2− β)
sup
y∈R

|y| 2
2−β fη(y) .
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When x and y have different signs, we use the fact that

|g(t, x)− g(t, y)| ≤ |g(t, x)− g(t, 0)|+ |g(t, 0)− g(t, y)|

≤ C1

εβ/2
(|x|+ |y|) = C1

εβ/2
|x− y| .(6.10)

(ii) Now let us prove (6.8). Denote

h(t, x) = Gβ(t, x)f
−1
b

( x

tβ/2

)
.

We assume that both x and y are nonnegative. The case where xy < 0 can be
covered by a similar argument as in (6.10). By (4.17),

∂

∂x
h(t, x) =− t�β�−1−β

2
Mβ/2,�β�−β/2

( x

tβ/2

)
exp

(
b

2

∣∣∣ x

tβ/2

∣∣∣c)
+

bct�β�−1−β

4

∣∣∣ x

tβ/2

∣∣∣c−1

exp

(
b

2

∣∣∣ x

tβ/2

∣∣∣c)Mβ/2,�β�

( x

tβ/2

)
.

Since the exponent of the asymptotic of Mλ,θ(x) in (4.19) depends only on the first
parameter λ, we have that

Cα,θ := sup
y∈R

|y|α
∣∣Mβ/2,θ(y)

∣∣ exp(
b

2
|y|c

)
< +∞ , for all θ ∈ R and α > 0 .

Note that �β� − 1− β ≤ 0. Therefore,∣∣∣∣ ∂

∂x
h(t, x)

∣∣∣∣ ≤ C ′
ε , for all x ∈ R and t ≥ ε > 0,

where

C ′
ε =

ε�β�−1−β

2
C0,�β�−β/2 +

b c ε�β�−1−β

4
Cc−1,�β� .

By (4.20), we have

∂

∂t
Gβ(t, x) =

�β� − 1− β/2

2
t�β�−2−β/2Mβ/2,�β�

( x

tβ/2

)
+

β

2

( x

tβ/2

)
t�β�−2−β/2Mβ/2,�β�−β/2

( x

tβ/2

)
.

Notice that

∂

∂t
exp

(
b

2

∣∣∣ x

tβ/2

∣∣∣c) = −β c b

4

( x

tβ/2

)c

t−1 exp

(
b

2

∣∣∣ x

tβ/2

∣∣∣c) .

Hence,

∂

∂t
h(t, x) =

�β� − 1− β/2

2
t�β�−2−β/2Mβ/2,�β�

( x

tβ/2

)
exp

(
b

2

∣∣∣ x

tβ/2

∣∣∣c)
+

β

2

x

tβ/2
t�β�−2−β/2Mβ/2,�β�−β/2

( x

tβ/2

)
exp

(
b

2

∣∣∣ x

tβ/2

∣∣∣c)
− β c b

8

( x

tβ/2

)c

t�β�−2−β/2Mβ/2,�β�

( x

tβ/2

)
exp

(
b

2

∣∣∣ x

tβ/2

∣∣∣c) .

Note that �β� − 2− β/2 ≤ 0. Therefore,∣∣∣∣ ∂

∂x
h(t, x)

∣∣∣∣ ≤ C ′′
ε , for all x ∈ R and t ≥ ε > 0,
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where

C ′′
ε = ε�β�−2−β/2

(
|�β� − 1− β/2|

2
C0,�β� +

β

2
C1,�β�−β/2 +

β c b

8
Cc,�β�

)
.

Finally, apply the mean value theorem to conclude this case. The argument is the
same as (i).

(iii) (6.9) can be proved in the same way. We will not repeat here. This completes
the proof of Lemma 6.5. �

Proposition 6.6. Suppose that 0 < β < 2 and μ ∈ Mβ
T (R). Denote

J1(t, x) := (Gβ(t, ·) ∗ μ) (x) and J2(t, x) :=
(
G∗

β(t, ·) ∗ μ
)
(x).

(1) Both functions Ji(t, x), i = 1, 2, are locally Lipschitz continuous on R∗
+ ×R,

that is, for all compact sets K ⊆ R∗
+ × R, there exits a constant CK > 0 such that

|Ji(t, x)− Ji(s, y)| = CK (|t− s|+ |x− y|) , for all (t, x) and (s, y) ∈ K.

Hence, the solution J0(t, x) in (2.3) is locally Lipschitz continuous on R∗
+ × R.

(2) If 0 < β ≤ 1 and if μ(dx) = f(x)dx where f is α-Hölder continuous with
α ∈ ]0, 1], then J1(·, ◦) ∈ Cαβ/2, αβ (R+ × R).

A similar proof for part (2) for SHE can be found in [6, Lemma 3.8].

Proof. (1) We first show the Lipschitz continuity of the function (t, x) �→ J1(t, x)
for 0 < β < 2. Let ε = inf {s : (s, y) ∈ K}, T = sup {s : (s, y) ∈ K} and k =
sup {|y| : (s, y) ∈ K}. Since K is a compact set of R∗

+ × R, we know that ε > 0,
T < +∞ and k < +∞. Suppose ε ≤ t, s ≤ T and x, y ∈ [−k, k]. Notice that

|J1(t, x)− J1(s, y)| ≤
∫
R

|μ|(dz) |Gβ(t, x− z)−Gβ(s, y − z)|

and∣∣Gβ(t, x− z)−Gβ(s, y − z)
∣∣

≤
∣∣∣∣Gβ(t, x− z)f−1

b

(
x− z

tβ/2

)
−Gβ(s, y − z)f−1

b

(
y − z

sβ/2

)∣∣∣∣ fb (x− z

tβ/2

)
+

∣∣∣∣fb (x− z

tβ/2

)
− fb

(
y − z

sβ/2

)∣∣∣∣Gβ(s, y − z)f−1
b

(
y − z

sβ/2

)
,

where b > 0 is defined in (4.12). By Lemma 6.5, there is a constant Cε > 0 such
that

|Gβ(t, x− z)−Gβ(s, y − z)| ≤ Cε (|t− s|+ |x− y|) .
By the asymptotics of Gβ(s, y) with s fixed, we know that for some constant C > 0,

Gβ(s, y − z)f−1
b

(
y − z

sβ/2

)
≤ C s�β�−1−β/2fb/2

(
y − z

sβ/2

)
, for all z ∈ R .(6.11)

Notice that fb
(

x
tβ/2

)
≤ fb εβc/2(x) if t ≥ ε, where c = 2

2−β . Since

−1

2
≤ �β� − 1− β/2 ≤ 1

2
,

we have

s�β�−1−β/2 ≤
√
T ∨ ε−1 , for ε ≤ s ≤ T ,
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where a ∨ b := max(a, b). Therefore,

|J1(t, x)− J1(s, y)| ≤ Cε

[
(|μ| ∗ fb εβc/2) (x) + C

√
T ∨ ε−1

(
|μ| ∗ fb εβc/2/2

)
(y)

]
× (|t− s|+ |x− y|) ,

for all x, y ∈ R and t, s ≥ ε. The function x �→ (|μ| ∗ fη) (x) is well-defined be-

cause μ ∈ Mβ
T (R). Moreover, it is continuous, which can be easily proved by the

dominated convergence theorem thanks to the continuity and boundedness of fη(x).
As for the function J2(t, x), we simply change the power of s in (6.11) by −β/2

and so

s−β/2 ≤ ε−β/2 ≤ ε−1 , for s ≥ ε and 1 < β < 2 .

Hence, we need to replace the term
√
T ∨ ε−1 by ε−1. Clearly,

√
T ∨ ε−1 ∨ ε−1 =√

T ∨ ε−1. Finally, we can choose the following constant for both J1(t, x) and
J2(t, x):

CK = 2Cε

(
sup

x∈[−k,k]

(|μ| ∗ fb εβc/2) (x) + C
(√

T ∨ ε−1
)

sup
x∈[−k,k]

(
|μ| ∗ fb εβc/2/2

)
(x)

)
< +∞ .

(2) Fix (t, x) and (t′, x′) ∈ R+ × R with t′ > t. Then we have that

|J1(t, x)− J1(t
′, x′)| ≤ |J1(t, x)− J1(t

′, x)|+ |J1(t′, x)− J1(t
′, x′)|

:= I1(t, t
′;x) + I1(t

′;x, x′).

By a change of variables and the Hölder continuity of f , for some constant C > 0,

I1(t, t
′;x) =

∣∣∣∣∫
R

dy (Gβ(t, x− y)−Gβ(t
′, x− y)) f(y)

∣∣∣∣
=

∣∣∣∣∫
R

dz Gβ(1, z)
(
f(x− tβ/2 z)− f(x− (t′)β/2 z)

)∣∣∣∣
≤ C

∣∣∣tβ/2 − (t′)β/2
∣∣∣α ∫

R

dz Gβ(1, z)|z|α,

where the integral is finite by (4.13). By subadditivity of the function x ∈ R+ �→
xβ/2, (t′)β/2 − tβ/2 ≤ |t′ − t|β/2. The arguments for I2(t

′;x, x′) are similar. We will
not repeat them here. This completes the proof of Proposition 6.6. �

The last result, Lemma 6.7, is about the initial data. Similar results for the
SHE, the SFHE, and the SWE can be proved in [6, Lemma 3.9], [8, Lemma 4.9] and
[7, Lemma 3.4], respectively. Recall that J0(t, x) is the solution to the homogeneous
equation; see (2.3).

Lemma 6.7. Suppose 0 < β < 2. For all μ and ν ∈ Mβ
T (R), all compact sets

K ⊆ R∗
+ × R,

sup
(t,x)∈K

([
1 + J2

0

]
�K

)
(t, x) < ∞.

Proof. We need only consider the part J2
0 �K because the part 1�K can be obtained

by the special case where μ(dx) = dx. Assume that μ ≥ 0. For general μ, we simply
replace μ below by |μ|. The case β = 1 is covered by [6, Lemma 3.9]. Note that by
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(5.6) and Proposition 5.8, for the two constants c1 and c2 > 0, one has that for all
(t, x) ∈ R+ × R,

K(t, x) ≤ Gβ(t, x)h(t), with h(t) := c1
(
t−σ + ec2 t

)
,(6.12)

where Gβ(t, x) is defined in (3.5) and σ < 1 is defined in (3.13). In the following,
denote z̄ = (z1 + z2)/2 and Δz = z1 − z2.

Slow diffusions. Fix β ∈ ]0, 1[ . By the same argument as Proposition 5.8, for
some nonnegative constant Cβ < ∞, Gβ(t, x) ≤ Cβ Ge,β(t, x) for all (t, x) ∈ R+×R.
Thus,

J2
0 (s, y) ≤ C2

β

∫∫
R2

μ(dz1)μ(dz2) Ge,β(s, y − z1)Ge,β(s, y − z2).

Because K(t, x) ≤ Cβ Ge,β(t, x) h(t), we see that(
J2
0 �K

)
(t, x) ≤C2

β

∫ t

0

ds h(t− s)

∫
R

dy

∫∫
R2

μ(dz1)μ(dz2)

× Ge,β(s, y − z1) Ge,β(s, y − z2) Ge,β(t− s, x− y).

By the inequality ∣∣∣∣a+ b

2

∣∣∣∣+ ∣∣∣∣a− b

2

∣∣∣∣ ≤ |a|+ |b|,(6.13)

we see that Ge,β(s, y − z1) Ge,β(s, y − z2) ≤ Ge,β (s, y − z̄) Ge,β (s, 1/2 Δz). Then
we integrate over dy using Lemma 5.10,(

J2
0 �K

)
(t, x) ≤ C2

β Ĉβ

∫ t

0

ds h(t− s)

×
∫∫

R2

μ(dz1)μ(dz2) Ge,β(s, 1/2 Δz) Ge,β

(
21/βt, x− z̄

)
.

By (6.13) again,

|z1 − z2|+ |(x− z1) + (x− z2)| ≥
∣∣∣∣12 [(x− z1) + (x− z2)− (z1 − z2)]

∣∣∣∣
+

∣∣∣∣12 [(x− z1) + (x− z2) + (z1 − z2)]

∣∣∣∣
= |x− z1|+ |x− z2|,

and thus

Ge,β(s, 1/2 Δz) Ge,β

(
21/βt, x− z̄

)
=

1

4
√
2 (st)β/2

exp

(
−|z1 − z2|

2 sβ/2
− |(x− z1) + (x− z2)|√

8 tβ/2

)
≤ 1

4
√
2 (st)β/2

exp

(
−|z1 − z2|√

8 tβ/2
− |(x− z1) + (x− z2)|√

8 tβ/2

)
≤ 1

4
√
2 (st)β/2

exp

(
−|x− z1|√

8 tβ/2
− |x− z2|√

8 tβ/2

)
= 4

√
2 Ge,β

(
26/βt, x− z1

)
Ge,β

(
26/βt, x− z2

)
.
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Denote I(t, x) =
(
μ ∗ Ge,β

(
26/βt, ·

))
(x). Clearly, μ ∈ Mβ

T (R) implies that I(t, x) <
+∞ for all (t, x) ∈ R∗

+ × R. Therefore,(
J2
0 �K

)
(t, x) ≤ 4

√
2 C2

β Ĉβ I(t, x)2
∫ t

0

ds h(t− s).

Clearly, the ds-integral is integrable because σ < 1.

Fast diffusions. Fix β ∈ ]1, 2[ . By (2.3), we only need to consider two cases: Case
I — μ = 0 and ν �= 0, and Case II — μ �= 0 and ν = 0.

We first consider Case I. By the same arguments as in Proposition 5.8, for some
nonnegative constant Cβ < +∞, Gβ(t, x) ≤ Cβt G1(t

β , x). Thus,

J2
0 (s, y) ≤ C2

βs
2

∫∫
R2

ν(dz1)ν(dz2)G1(s
β, y − z1)G1(s

β, y − z2).

By (6.12), we see that(
J2
0 �K

)
(t, x) ≤C2

β

∫ t

0

ds h(t− s)s2
∫
R

dy

∫∫
R2

ν(dz1)ν(dz2)

×G1(s
β, y − z1) G1(s

β, y − z2) G1((t− s)β, x− y).

By [6, Lemma 5.4],

G1(s
β, y − z1) G1(s

β, y − z2) = G1

(
sβ

2
, y − z̄

)
G1

(
2sβ,Δz

)
≤

√
2G1

(
sβ , y − z̄

)
G1

(
2sβ,Δz

)
.

Integrate over dy using the semigroup property of the heat kernel function to obtain(
J2
0 �K

)
(t, x) ≤ C2

β

√
2

∫ t

0

ds h(t− s)s2

×
∫∫

R2

ν(dz1)ν(dz2)G1(2s
β,Δz)G1((t− s)β + sβ , x− z̄).

By (5.12) and [6, Lemma 5.5],

G1((t− s)β + sβ , x− z̄)G1(2s
β,Δz) ≤ 2

β−1
2 G1(t

β , x− z̄)G1(2s
β,Δz)

≤ 21+β/2 t
β/2

sβ/2
G1(4t

β, x− z1)G1(4t
β , x− z2).

Denote I(t, x) =
∫
R
ν(dz)G1(4t

β, x−z). Clearly, ν ∈ Mβ
T (R) implies that I(t, x) <

+∞ for all (t, x) ∈ R∗
+ × R. Therefore,(

J2
0 �K

)
(t, x) ≤ C2

β 2
β+3
2 tβ/2I(t, x)2

∫ t

0

ds s2−β/2h(t− s).

Clearly, the ds-integral is integrable because σ < 1 and 2− β/2 > −1.
As for Case II, by the same argument as Proposition 5.8, for some nonnegative

constant Cβ < ∞, G∗
β(t, x) ≤ Cβ g(t, x) for all (t, x) ∈ R+ × R. Therefore, this

case can be proved by the same arguments as the slow diffusion case with Gβ(t, x)
replaced by G∗

β(t, x).
Finally, we remark that in both cases, by the continuity of the function R∗

+ ×
R � (t, x) �→ I(t, x) (see Proposition 6.6), for all compact sets K ⊆ R∗

+ × R,
sup(t,x)∈K I(t, x)2 < +∞. This completes the whole proof of Lemma 6.7. �
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Proof of Theorem 3.1. The proof follows the same six steps as those in the proof
of [6, Theorem 2.4] with some minor changes:

Both proofs rely on estimates on the kernel function K(t, x). Instead of an
explicit formula for the SHE (see [6, Proposition 2.2]), Theorem 3.4 ensures the
finiteness of K(t, x) and provides a bound on it.

In the Picard iteration scheme, i.e., Steps 1–4 in the proof of [6, Theorem 2.4], we
need to check the Lp(Ω)-continuity of the stochastic integral, which then guarantees
that at the next step, the integrand is again in P2, via [6, Proposition 3.4]. Here, the
statement of [6, Proposition 3.4] is still true by replacing in its proof [6, Proposition
3.5] by either Proposition 6.3 for the slow diffusion equations or Proposition 6.4 for
the fast diffusion equations, and replacing [6, Proposition 5.3] by Proposition 6.1.

In the first step of the Picard iteration scheme, the following property, which
determines the set of the admissible initial data, needs to be verified: for all compact
sets K ⊆ R+ × R,

sup
(t,x)∈K

([
1 + J2

0

]
� G2

β

)
(t, x) < +∞.

For the SHE, this property is proved in [6, Lemma 3.9]. Here, Lemma 6.7 gives
the desired result with minimal requirements on the initial data. This property,
together with the calculation of the upper bound on K(t, x) in Theorem 3.4, guar-
antees that all the Lp(Ω)-moments of u(t, x) are finite. This property is also used
to establish uniform convergence of the Picard iteration scheme, hence Lp(Ω)–
continuity of (t, x) �→ I(t, x).

The proof of (3.2) is identical to that of the corresponding property in [6, The-
orem 2.4]. This completes the proof of Theorem 3.1. �
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